极早产儿呼吸力学的实用参数可识别性。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Richard Foster, Laura Ellwein Fix
{"title":"极早产儿呼吸力学的实用参数可识别性。","authors":"Richard Foster, Laura Ellwein Fix","doi":"10.1098/rsta.2024.0226","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of mathematical models describing respiratory mechanics has grown in recent years, however, parameter identifiability of such models has only been studied in the last decade in the context of observable data. This study investigates parameter identifiability of a nonlinear respiratory mechanics model tuned to the physiology of an extremely preterm infant, using global Morris screening, local deterministic sensitivity analysis and singular value decomposition-based subset selection. The model predicts airflow and dynamic pulmonary volumes and pressures under varying levels of continuous positive airway pressure, and a range of parameters characterizing both surfactant-treated and surfactant-deficient lung. Sensitivity analyses indicated 11 parameters influence model outputs over the range of continuous positive airway pressure and lung health scenarios. The model was adapted to data from a spontaneously breathing 1 kg infant using gradient-based optimization to estimate the parameter subset characterizing the patient's state of health.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240226"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical parameter identifiability of respiratory mechanics in the extremely preterm infant.\",\"authors\":\"Richard Foster, Laura Ellwein Fix\",\"doi\":\"10.1098/rsta.2024.0226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complexity of mathematical models describing respiratory mechanics has grown in recent years, however, parameter identifiability of such models has only been studied in the last decade in the context of observable data. This study investigates parameter identifiability of a nonlinear respiratory mechanics model tuned to the physiology of an extremely preterm infant, using global Morris screening, local deterministic sensitivity analysis and singular value decomposition-based subset selection. The model predicts airflow and dynamic pulmonary volumes and pressures under varying levels of continuous positive airway pressure, and a range of parameters characterizing both surfactant-treated and surfactant-deficient lung. Sensitivity analyses indicated 11 parameters influence model outputs over the range of continuous positive airway pressure and lung health scenarios. The model was adapted to data from a spontaneously breathing 1 kg infant using gradient-based optimization to estimate the parameter subset characterizing the patient's state of health.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2293\",\"pages\":\"20240226\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0226\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0226","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,描述呼吸力学的数学模型越来越复杂,然而,这些模型的参数可识别性仅在过去十年中在可观测数据的背景下进行了研究。本研究利用全局Morris筛选、局部确定性敏感性分析和基于奇异值分解的子集选择,研究了一个非线性呼吸力学模型的参数可识别性,该模型调整到一个极早产儿的生理状态。该模型预测在不同水平的持续气道正压下的气流和动态肺容量和压力,以及表征表面活性剂处理和表面活性剂缺乏肺的一系列参数。敏感性分析表明,在持续气道正压和肺部健康情景范围内,有11个参数影响模型输出。该模型使用基于梯度的优化来估计表征患者健康状态的参数子集,以适应来自1公斤自主呼吸婴儿的数据。本文是主题问题“医疗保健和生物系统的不确定性量化(第2部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical parameter identifiability of respiratory mechanics in the extremely preterm infant.

The complexity of mathematical models describing respiratory mechanics has grown in recent years, however, parameter identifiability of such models has only been studied in the last decade in the context of observable data. This study investigates parameter identifiability of a nonlinear respiratory mechanics model tuned to the physiology of an extremely preterm infant, using global Morris screening, local deterministic sensitivity analysis and singular value decomposition-based subset selection. The model predicts airflow and dynamic pulmonary volumes and pressures under varying levels of continuous positive airway pressure, and a range of parameters characterizing both surfactant-treated and surfactant-deficient lung. Sensitivity analyses indicated 11 parameters influence model outputs over the range of continuous positive airway pressure and lung health scenarios. The model was adapted to data from a spontaneously breathing 1 kg infant using gradient-based optimization to estimate the parameter subset characterizing the patient's state of health.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信