Rebecca M Schlösser, Florian Krumbach, Eyleen Corrales, Geoffroy Andrieux, Christian Preisinger, Franziska Liss, Alexandra Golzmann, Melanie Boerries, Kerstin Becker, Ruth Knüchel, Stefan Garczyk, Bernhard Lüscher
{"title":"多维组学揭示了ARID1A在正常样和恶性尿路上皮细胞中对DNA损伤、剪接和细胞周期的精心控制。","authors":"Rebecca M Schlösser, Florian Krumbach, Eyleen Corrales, Geoffroy Andrieux, Christian Preisinger, Franziska Liss, Alexandra Golzmann, Melanie Boerries, Kerstin Becker, Ruth Knüchel, Stefan Garczyk, Bernhard Lüscher","doi":"10.1002/1878-0261.70019","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic regulators, such as the SWI/SNF complex, with important roles in tissue development and homeostasis, are frequently mutated in cancer. ARID1A, a subunit of the SWI/SNF complex, is mutated in approximately 20% of all bladder tumors; however, the consequences of this remain poorly understood. Finding truncations to be the most common mutation, we generated loss- and gain-of-function models to conduct RNA-Seq, interactome analyses, Omni-ATAC-Seq, and functional studies to characterize ARID1A-affected pathways potentially suitable for the treatment of ARID1A-deficient bladder cancers. We observed decreased cell proliferation and deregulation of stress-regulated pathways, including DNA repair, in ARID1A-deficient cells. Furthermore, ARID1A was linked to alternative splicing and translational regulation on RNA and interactome levels. ARID1A deficiency drastically reduced the accessibility of chromatin, especially around introns and distal enhancers, in a functional enrichment analysis. Less accessible chromatin areas were mapped to pathways such as cell proliferation and DNA damage response. Indeed, the G2/M checkpoint appeared impaired after DNA damage in ARID1A-deficient cells. Together, our data highlight the broad impact of ARID1A loss and the possibility of targeting proliferative and DNA repair pathways for treatment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional OMICs reveal ARID1A orchestrated control of DNA damage, splicing, and cell cycle in normal-like and malignant urothelial cells.\",\"authors\":\"Rebecca M Schlösser, Florian Krumbach, Eyleen Corrales, Geoffroy Andrieux, Christian Preisinger, Franziska Liss, Alexandra Golzmann, Melanie Boerries, Kerstin Becker, Ruth Knüchel, Stefan Garczyk, Bernhard Lüscher\",\"doi\":\"10.1002/1878-0261.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic regulators, such as the SWI/SNF complex, with important roles in tissue development and homeostasis, are frequently mutated in cancer. ARID1A, a subunit of the SWI/SNF complex, is mutated in approximately 20% of all bladder tumors; however, the consequences of this remain poorly understood. Finding truncations to be the most common mutation, we generated loss- and gain-of-function models to conduct RNA-Seq, interactome analyses, Omni-ATAC-Seq, and functional studies to characterize ARID1A-affected pathways potentially suitable for the treatment of ARID1A-deficient bladder cancers. We observed decreased cell proliferation and deregulation of stress-regulated pathways, including DNA repair, in ARID1A-deficient cells. Furthermore, ARID1A was linked to alternative splicing and translational regulation on RNA and interactome levels. ARID1A deficiency drastically reduced the accessibility of chromatin, especially around introns and distal enhancers, in a functional enrichment analysis. Less accessible chromatin areas were mapped to pathways such as cell proliferation and DNA damage response. Indeed, the G2/M checkpoint appeared impaired after DNA damage in ARID1A-deficient cells. Together, our data highlight the broad impact of ARID1A loss and the possibility of targeting proliferative and DNA repair pathways for treatment.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.70019\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Multidimensional OMICs reveal ARID1A orchestrated control of DNA damage, splicing, and cell cycle in normal-like and malignant urothelial cells.
Epigenetic regulators, such as the SWI/SNF complex, with important roles in tissue development and homeostasis, are frequently mutated in cancer. ARID1A, a subunit of the SWI/SNF complex, is mutated in approximately 20% of all bladder tumors; however, the consequences of this remain poorly understood. Finding truncations to be the most common mutation, we generated loss- and gain-of-function models to conduct RNA-Seq, interactome analyses, Omni-ATAC-Seq, and functional studies to characterize ARID1A-affected pathways potentially suitable for the treatment of ARID1A-deficient bladder cancers. We observed decreased cell proliferation and deregulation of stress-regulated pathways, including DNA repair, in ARID1A-deficient cells. Furthermore, ARID1A was linked to alternative splicing and translational regulation on RNA and interactome levels. ARID1A deficiency drastically reduced the accessibility of chromatin, especially around introns and distal enhancers, in a functional enrichment analysis. Less accessible chromatin areas were mapped to pathways such as cell proliferation and DNA damage response. Indeed, the G2/M checkpoint appeared impaired after DNA damage in ARID1A-deficient cells. Together, our data highlight the broad impact of ARID1A loss and the possibility of targeting proliferative and DNA repair pathways for treatment.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.