Yujiao Wang , Yifan Wu , Hongwei Jiang , Shang Li , Jingjing Li , Cong Wang , Lexin Yang , Xiying Zhou , Juanjuan Yu , Junyu Zhai , Zi-Jiang Chen , Yanzhi Du
{"title":"l -犬尿氨酸激活AHR-PCSK9通路介导多囊卵巢综合征的脂质代谢和卵巢功能障碍。","authors":"Yujiao Wang , Yifan Wu , Hongwei Jiang , Shang Li , Jingjing Li , Cong Wang , Lexin Yang , Xiying Zhou , Juanjuan Yu , Junyu Zhai , Zi-Jiang Chen , Yanzhi Du","doi":"10.1016/j.metabol.2025.156238","DOIUrl":null,"url":null,"abstract":"<div><div>Dysregulated amino acid metabolism is a key contributor to polycystic ovary syndrome (PCOS). This cross-sectional study revealed that serum levels of L-kynurenine (L-Kyn) were significantly elevated in women with PCOS, whereas pyridoxal 5′-phosphate (PLP) levels were markedly reduced. Moreover, human serum L-Kyn levels exhibited a positive correlated with low-density lipoprotein cholesterol (LDL-C) and a negative correlation with high-density lipoprotein cholesterol (HDL-C). Additionally, letrozole (LET) induced PCOS-like mice displayed increased hepatic L-Kyn levels. Mechanistically, both in vivo and in vitro experiments demonstrated that the upregulation of indoleamine 2,3-dioxygenase (IDO1) activates the aryl hydrocarbon receptor (AHR) - proprotein convertase subtilisin/kexin type 9 (PCSK9) pathway in the liver of PCOS-like mice, thereby contributing to dyslipidemia. Treatment with epacadostat, an inhibitor of the enzyme IDO1, or PLP, a cofactor for L-Kyn catabolism, effectively restored ovarian function, improved glucose tolerance, and ameliorated lipid profile abnormalities in PCOS-like mice.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"168 ","pages":"Article 156238"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-Kynurenine activates the AHR-PCSK9 pathway to mediate the lipid metabolic and ovarian dysfunction in polycystic ovary syndrome\",\"authors\":\"Yujiao Wang , Yifan Wu , Hongwei Jiang , Shang Li , Jingjing Li , Cong Wang , Lexin Yang , Xiying Zhou , Juanjuan Yu , Junyu Zhai , Zi-Jiang Chen , Yanzhi Du\",\"doi\":\"10.1016/j.metabol.2025.156238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dysregulated amino acid metabolism is a key contributor to polycystic ovary syndrome (PCOS). This cross-sectional study revealed that serum levels of L-kynurenine (L-Kyn) were significantly elevated in women with PCOS, whereas pyridoxal 5′-phosphate (PLP) levels were markedly reduced. Moreover, human serum L-Kyn levels exhibited a positive correlated with low-density lipoprotein cholesterol (LDL-C) and a negative correlation with high-density lipoprotein cholesterol (HDL-C). Additionally, letrozole (LET) induced PCOS-like mice displayed increased hepatic L-Kyn levels. Mechanistically, both in vivo and in vitro experiments demonstrated that the upregulation of indoleamine 2,3-dioxygenase (IDO1) activates the aryl hydrocarbon receptor (AHR) - proprotein convertase subtilisin/kexin type 9 (PCSK9) pathway in the liver of PCOS-like mice, thereby contributing to dyslipidemia. Treatment with epacadostat, an inhibitor of the enzyme IDO1, or PLP, a cofactor for L-Kyn catabolism, effectively restored ovarian function, improved glucose tolerance, and ameliorated lipid profile abnormalities in PCOS-like mice.</div></div>\",\"PeriodicalId\":18694,\"journal\":{\"name\":\"Metabolism: clinical and experimental\",\"volume\":\"168 \",\"pages\":\"Article 156238\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolism: clinical and experimental\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026049525001076\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525001076","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
L-Kynurenine activates the AHR-PCSK9 pathway to mediate the lipid metabolic and ovarian dysfunction in polycystic ovary syndrome
Dysregulated amino acid metabolism is a key contributor to polycystic ovary syndrome (PCOS). This cross-sectional study revealed that serum levels of L-kynurenine (L-Kyn) were significantly elevated in women with PCOS, whereas pyridoxal 5′-phosphate (PLP) levels were markedly reduced. Moreover, human serum L-Kyn levels exhibited a positive correlated with low-density lipoprotein cholesterol (LDL-C) and a negative correlation with high-density lipoprotein cholesterol (HDL-C). Additionally, letrozole (LET) induced PCOS-like mice displayed increased hepatic L-Kyn levels. Mechanistically, both in vivo and in vitro experiments demonstrated that the upregulation of indoleamine 2,3-dioxygenase (IDO1) activates the aryl hydrocarbon receptor (AHR) - proprotein convertase subtilisin/kexin type 9 (PCSK9) pathway in the liver of PCOS-like mice, thereby contributing to dyslipidemia. Treatment with epacadostat, an inhibitor of the enzyme IDO1, or PLP, a cofactor for L-Kyn catabolism, effectively restored ovarian function, improved glucose tolerance, and ameliorated lipid profile abnormalities in PCOS-like mice.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism