通用微分方程中不确定度量化的评价。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nina Schmid, David Fernandes Del Pozo, Willem Waegeman, Jan Hasenauer
{"title":"通用微分方程中不确定度量化的评价。","authors":"Nina Schmid, David Fernandes Del Pozo, Willem Waegeman, Jan Hasenauer","doi":"10.1098/rsta.2024.0444","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific machine learning is a new class of approaches that integrate physical knowledge and mechanistic models with data-driven techniques to uncover the governing equations of complex processes. Among the available approaches, universal differential equations (UDEs) combine prior knowledge in the form of mechanistic formulations with universal function approximators, such as neural networks. Integral to the efficacy of UDEs is the joint estimation of parameters for both the mechanistic formulations and the universal function approximators using empirical data. However, the robustness and applicability of these resultant models hinge upon the rigorous quantification of uncertainties associated with their parameters and predictive capabilities. In this work, we provide a formalization of uncertainty quantification (UQ) for UDEs and investigate key frequentist and Bayesian methods. By analyzing three synthetic examples of varying complexity, we evaluate the validity and efficiency of ensembles, variational inference and Markov-chain Monte Carlo sampling as epistemic UQ methods for UDEs.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240444"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of uncertainty quantification in universal differential equations.\",\"authors\":\"Nina Schmid, David Fernandes Del Pozo, Willem Waegeman, Jan Hasenauer\",\"doi\":\"10.1098/rsta.2024.0444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scientific machine learning is a new class of approaches that integrate physical knowledge and mechanistic models with data-driven techniques to uncover the governing equations of complex processes. Among the available approaches, universal differential equations (UDEs) combine prior knowledge in the form of mechanistic formulations with universal function approximators, such as neural networks. Integral to the efficacy of UDEs is the joint estimation of parameters for both the mechanistic formulations and the universal function approximators using empirical data. However, the robustness and applicability of these resultant models hinge upon the rigorous quantification of uncertainties associated with their parameters and predictive capabilities. In this work, we provide a formalization of uncertainty quantification (UQ) for UDEs and investigate key frequentist and Bayesian methods. By analyzing three synthetic examples of varying complexity, we evaluate the validity and efficiency of ensembles, variational inference and Markov-chain Monte Carlo sampling as epistemic UQ methods for UDEs.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2293\",\"pages\":\"20240444\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0444\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0444","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

科学机器学习是一种新的方法,它将物理知识和机械模型与数据驱动技术相结合,以揭示复杂过程的控制方程。在可用的方法中,通用微分方程(UDEs)将机械公式形式的先验知识与通用函数近似器(如神经网络)相结合。积分的有效性是力学公式和通用函数逼近器使用经验数据的参数的联合估计。然而,这些最终模型的稳健性和适用性取决于与它们的参数和预测能力相关的不确定性的严格量化。在这项工作中,我们提供了不确定性量化(UQ)的形式化,并研究了关键频率和贝叶斯方法。通过分析三个不同复杂度的综合实例,我们评价了集合、变分推理和马尔可夫链蒙特卡罗抽样作为认知UQ方法的有效性和效率。本文是主题问题“医疗保健和生物系统的不确定性量化(第2部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of uncertainty quantification in universal differential equations.

Scientific machine learning is a new class of approaches that integrate physical knowledge and mechanistic models with data-driven techniques to uncover the governing equations of complex processes. Among the available approaches, universal differential equations (UDEs) combine prior knowledge in the form of mechanistic formulations with universal function approximators, such as neural networks. Integral to the efficacy of UDEs is the joint estimation of parameters for both the mechanistic formulations and the universal function approximators using empirical data. However, the robustness and applicability of these resultant models hinge upon the rigorous quantification of uncertainties associated with their parameters and predictive capabilities. In this work, we provide a formalization of uncertainty quantification (UQ) for UDEs and investigate key frequentist and Bayesian methods. By analyzing three synthetic examples of varying complexity, we evaluate the validity and efficiency of ensembles, variational inference and Markov-chain Monte Carlo sampling as epistemic UQ methods for UDEs.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信