利用大规模黏度数据和集成深度学习加速高浓度单克隆抗体的开发。

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-04-01 DOI:10.1080/19420862.2025.2483944
Lateefat A Kalejaye, Jia-Min Chu, I-En Wu, Bismark Amofah, Amber Lee, Mark Hutchinson, Chacko Chakiath, Andrew Dippel, Gilad Kaplan, Melissa Damschroder, Valentin Stanev, Maryam Pouryahya, Mehdi Boroumand, Jenna Caldwell, Alison Hinton, Madison Kreitz, Mitali Shah, Austin Gallegos, Neil Mody, Pin-Kuang Lai
{"title":"利用大规模黏度数据和集成深度学习加速高浓度单克隆抗体的开发。","authors":"Lateefat A Kalejaye, Jia-Min Chu, I-En Wu, Bismark Amofah, Amber Lee, Mark Hutchinson, Chacko Chakiath, Andrew Dippel, Gilad Kaplan, Melissa Damschroder, Valentin Stanev, Maryam Pouryahya, Mehdi Boroumand, Jenna Caldwell, Alison Hinton, Madison Kreitz, Mitali Shah, Austin Gallegos, Neil Mody, Pin-Kuang Lai","doi":"10.1080/19420862.2025.2483944","DOIUrl":null,"url":null,"abstract":"<p><p>Highly concentrated antibody solutions are necessary for developing subcutaneous injections but often exhibit high viscosities, posing challenges in antibody-drug development, manufacturing, and administration. Previous computational models were only limited to a few dozen data points for training, a bottleneck for generalizability. In this study, we measured the viscosity of a panel of 229 monoclonal antibodies (mAbs) to develop predictive models for high concentration mAb screening. We developed DeepViscosity, consisting of 102 ensemble artificial neural network models to classify low-viscosity (≤20 cP) and high-viscosity (>20 cP) mAbs at 150 mg/mL, using 30 features from a sequence-based DeepSP model. Two independent test sets, comprising 16 and 38 mAbs with known experimental viscosity, were used to assess DeepViscosity's generalizability. The model exhibited an accuracy of 87.5% and 89.5% on both test sets, respectively, surpassing other predictive methods. DeepViscosity will facilitate early-stage antibody development to select low-viscosity antibodies for improved manufacturability and formulation properties, critical for subcutaneous drug delivery. The webserver-based application can be freely accessed via https://devpred.onrender.com/DeepViscosity.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2483944"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating high-concentration monoclonal antibody development with large-scale viscosity data and ensemble deep learning.\",\"authors\":\"Lateefat A Kalejaye, Jia-Min Chu, I-En Wu, Bismark Amofah, Amber Lee, Mark Hutchinson, Chacko Chakiath, Andrew Dippel, Gilad Kaplan, Melissa Damschroder, Valentin Stanev, Maryam Pouryahya, Mehdi Boroumand, Jenna Caldwell, Alison Hinton, Madison Kreitz, Mitali Shah, Austin Gallegos, Neil Mody, Pin-Kuang Lai\",\"doi\":\"10.1080/19420862.2025.2483944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly concentrated antibody solutions are necessary for developing subcutaneous injections but often exhibit high viscosities, posing challenges in antibody-drug development, manufacturing, and administration. Previous computational models were only limited to a few dozen data points for training, a bottleneck for generalizability. In this study, we measured the viscosity of a panel of 229 monoclonal antibodies (mAbs) to develop predictive models for high concentration mAb screening. We developed DeepViscosity, consisting of 102 ensemble artificial neural network models to classify low-viscosity (≤20 cP) and high-viscosity (>20 cP) mAbs at 150 mg/mL, using 30 features from a sequence-based DeepSP model. Two independent test sets, comprising 16 and 38 mAbs with known experimental viscosity, were used to assess DeepViscosity's generalizability. The model exhibited an accuracy of 87.5% and 89.5% on both test sets, respectively, surpassing other predictive methods. DeepViscosity will facilitate early-stage antibody development to select low-viscosity antibodies for improved manufacturability and formulation properties, critical for subcutaneous drug delivery. The webserver-based application can be freely accessed via https://devpred.onrender.com/DeepViscosity.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2483944\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2483944\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2483944","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

高度浓缩的抗体溶液是开发皮下注射所必需的,但往往表现出高粘度,给抗体药物的开发、制造和管理带来挑战。以前的计算模型只局限于几十个数据点进行训练,这是泛化的瓶颈。在这项研究中,我们测量了229个单克隆抗体(mAb)的黏度,以建立高浓度mAb筛选的预测模型。我们开发了DeepViscosity,由102个集成人工神经网络模型组成,使用基于序列的DeepSP模型中的30个特征,对150 mg/mL的低粘度(≤20 cP)和高粘度(bbb20 cP)单克隆抗体进行分类。两个独立的测试集,包括16个和38个已知实验粘度的单抗,用于评估DeepViscosity的泛化性。该模型在两个测试集上的准确率分别为87.5%和89.5%,优于其他预测方法。DeepViscosity将促进早期抗体开发,以选择低粘度抗体,以提高可制造性和配方性能,这对皮下给药至关重要。基于web服务器的应用程序可以通过https://devpred.onrender.com/DeepViscosity免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating high-concentration monoclonal antibody development with large-scale viscosity data and ensemble deep learning.

Highly concentrated antibody solutions are necessary for developing subcutaneous injections but often exhibit high viscosities, posing challenges in antibody-drug development, manufacturing, and administration. Previous computational models were only limited to a few dozen data points for training, a bottleneck for generalizability. In this study, we measured the viscosity of a panel of 229 monoclonal antibodies (mAbs) to develop predictive models for high concentration mAb screening. We developed DeepViscosity, consisting of 102 ensemble artificial neural network models to classify low-viscosity (≤20 cP) and high-viscosity (>20 cP) mAbs at 150 mg/mL, using 30 features from a sequence-based DeepSP model. Two independent test sets, comprising 16 and 38 mAbs with known experimental viscosity, were used to assess DeepViscosity's generalizability. The model exhibited an accuracy of 87.5% and 89.5% on both test sets, respectively, surpassing other predictive methods. DeepViscosity will facilitate early-stage antibody development to select low-viscosity antibodies for improved manufacturability and formulation properties, critical for subcutaneous drug delivery. The webserver-based application can be freely accessed via https://devpred.onrender.com/DeepViscosity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信