劳埃聚焦几何中远场实验室衍射对比层析成像的关键一步。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2025-03-13 eCollection Date: 2025-04-01 DOI:10.1107/S1600576725001396
Yubin Zhang, Adam Lindkvist
{"title":"劳埃聚焦几何中远场实验室衍射对比层析成像的关键一步。","authors":"Yubin Zhang, Adam Lindkvist","doi":"10.1107/S1600576725001396","DOIUrl":null,"url":null,"abstract":"<p><p>Recent simulations have demonstrated the promising potential of far-field laboratory diffraction contrast tomography (FF-LabDCT) in the Laue focusing geometry for 3D mapping of grain-averaged deviatoric strain tensors, achieving a strain uncertainty as low as 1 × 10<sup>-4</sup> [Lindkvist & Zhang (2022). <i>J. Appl. Cryst.</i> <b>55</b>, 21-32]. The present work takes a critical step towards realizing this tool. It presents the first attempt at implementing FF-LabDCT using a Zeiss Xradia 520 Versa X-ray microscope, including both hardware and software development. A new algorithm, LabDBB, which adapts the previously developed dictionary-based branch and bound (DBB) principles, is implemented for indexing FF-LabDCT data. The performance of LabDBB is evaluated by comparing the indexed grain crystallographic orientations and center of mass positions with those obtained using near-field LabDCT within the same gauge volume of a fully recrystallized iron sample. Finally, the challenges related to fitting the grain-averaged deviatoric strain tensor using the current FF-LabDCT setup are identified. The strain analysis suggests that, once these challenges are addressed, a strain uncertainty as low as 2 × 10<sup>-4</sup> could potentially be achieved. This work demonstrates the possibility for developing a tool capable of 3D grain-scale strain analysis with high strain precision in home laboratories.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 2","pages":"447-457"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957408/pdf/","citationCount":"0","resultStr":"{\"title\":\"A critical step toward far-field laboratory diffraction contrast tomography in Laue focusing geometry.\",\"authors\":\"Yubin Zhang, Adam Lindkvist\",\"doi\":\"10.1107/S1600576725001396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent simulations have demonstrated the promising potential of far-field laboratory diffraction contrast tomography (FF-LabDCT) in the Laue focusing geometry for 3D mapping of grain-averaged deviatoric strain tensors, achieving a strain uncertainty as low as 1 × 10<sup>-4</sup> [Lindkvist & Zhang (2022). <i>J. Appl. Cryst.</i> <b>55</b>, 21-32]. The present work takes a critical step towards realizing this tool. It presents the first attempt at implementing FF-LabDCT using a Zeiss Xradia 520 Versa X-ray microscope, including both hardware and software development. A new algorithm, LabDBB, which adapts the previously developed dictionary-based branch and bound (DBB) principles, is implemented for indexing FF-LabDCT data. The performance of LabDBB is evaluated by comparing the indexed grain crystallographic orientations and center of mass positions with those obtained using near-field LabDCT within the same gauge volume of a fully recrystallized iron sample. Finally, the challenges related to fitting the grain-averaged deviatoric strain tensor using the current FF-LabDCT setup are identified. The strain analysis suggests that, once these challenges are addressed, a strain uncertainty as low as 2 × 10<sup>-4</sup> could potentially be achieved. This work demonstrates the possibility for developing a tool capable of 3D grain-scale strain analysis with high strain precision in home laboratories.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 2\",\"pages\":\"447-457\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957408/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725001396\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725001396","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

最近的模拟已经证明了远场实验室衍射对比层析成像(FF-LabDCT)在Laue聚焦几何中用于颗粒平均偏差应变张量的三维映射的潜力,实现了低至1 × 10-4的应变不确定性[Lindkvist & Zhang(2022)]。j:。[j].中国生物医学工程学报,2016,31(5):521 - 532。目前的工作是实现这一工具的关键一步。它提出了使用蔡司Xradia 520 Versa x射线显微镜实现FF-LabDCT的第一次尝试,包括硬件和软件开发。针对FF-LabDCT数据的索引,提出了一种新的算法LabDBB,该算法采用了先前开发的基于字典的分支和边界(DBB)原则。通过比较LabDCT与近场LabDCT在完全再结晶铁样品相同规格体积内的晶粒结晶取向和质心位置,评价LabDBB的性能。最后,指出了使用当前FF-LabDCT设置拟合晶粒平均偏差应变张量的挑战。应变分析表明,一旦这些挑战得到解决,应变不确定性可能低至2 × 10-4。这项工作证明了在家庭实验室中开发一种具有高应变精度的3D粒度应变分析工具的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A critical step toward far-field laboratory diffraction contrast tomography in Laue focusing geometry.

Recent simulations have demonstrated the promising potential of far-field laboratory diffraction contrast tomography (FF-LabDCT) in the Laue focusing geometry for 3D mapping of grain-averaged deviatoric strain tensors, achieving a strain uncertainty as low as 1 × 10-4 [Lindkvist & Zhang (2022). J. Appl. Cryst. 55, 21-32]. The present work takes a critical step towards realizing this tool. It presents the first attempt at implementing FF-LabDCT using a Zeiss Xradia 520 Versa X-ray microscope, including both hardware and software development. A new algorithm, LabDBB, which adapts the previously developed dictionary-based branch and bound (DBB) principles, is implemented for indexing FF-LabDCT data. The performance of LabDBB is evaluated by comparing the indexed grain crystallographic orientations and center of mass positions with those obtained using near-field LabDCT within the same gauge volume of a fully recrystallized iron sample. Finally, the challenges related to fitting the grain-averaged deviatoric strain tensor using the current FF-LabDCT setup are identified. The strain analysis suggests that, once these challenges are addressed, a strain uncertainty as low as 2 × 10-4 could potentially be achieved. This work demonstrates the possibility for developing a tool capable of 3D grain-scale strain analysis with high strain precision in home laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信