{"title":"卷绕线圈作为无机化学家工具箱中内含物的配体。磁共振成像造影剂设计的进展。","authors":"Anna F.A. Peacock","doi":"10.1016/j.jinorgbio.2025.112903","DOIUrl":null,"url":null,"abstract":"<div><div>Ligands are essential tools in synthetic inorganic chemistry, enabling the fine-tuning of metal ion properties to optimize performance. Spanning from small molecules to macromolecular proteins, ligands vary widely in structure and function. De novo designed coiled coils serve as a unique bridge between these extremes, offering precise control over metal coordination. Here, we explore the application of coiled coil ligands in MRI contrast agent design, leveraging their versatility to systematically modulate the coordination chemistry and hydration state of gadolinium - the metal used in most clinical MRI contrast agents. This novel class of gadolinium-based agents demonstrates superior performance compared to existing clinical agents, highlighting the potential of coiled coil ligands. Furthermore, when coordinated to copper, these ligands form complexes that challenge the conventional notion that copper is unsuitable for MRI contrast agents. These findings establish coiled coil ligands as a powerful platform for advancing contrast agent design.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"268 ","pages":"Article 112903"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coiled coils as ligands for inclusion in the inorganic chemist's toolbox – For advances in MRI contrast agent design\",\"authors\":\"Anna F.A. Peacock\",\"doi\":\"10.1016/j.jinorgbio.2025.112903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ligands are essential tools in synthetic inorganic chemistry, enabling the fine-tuning of metal ion properties to optimize performance. Spanning from small molecules to macromolecular proteins, ligands vary widely in structure and function. De novo designed coiled coils serve as a unique bridge between these extremes, offering precise control over metal coordination. Here, we explore the application of coiled coil ligands in MRI contrast agent design, leveraging their versatility to systematically modulate the coordination chemistry and hydration state of gadolinium - the metal used in most clinical MRI contrast agents. This novel class of gadolinium-based agents demonstrates superior performance compared to existing clinical agents, highlighting the potential of coiled coil ligands. Furthermore, when coordinated to copper, these ligands form complexes that challenge the conventional notion that copper is unsuitable for MRI contrast agents. These findings establish coiled coil ligands as a powerful platform for advancing contrast agent design.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"268 \",\"pages\":\"Article 112903\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425000832\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000832","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Coiled coils as ligands for inclusion in the inorganic chemist's toolbox – For advances in MRI contrast agent design
Ligands are essential tools in synthetic inorganic chemistry, enabling the fine-tuning of metal ion properties to optimize performance. Spanning from small molecules to macromolecular proteins, ligands vary widely in structure and function. De novo designed coiled coils serve as a unique bridge between these extremes, offering precise control over metal coordination. Here, we explore the application of coiled coil ligands in MRI contrast agent design, leveraging their versatility to systematically modulate the coordination chemistry and hydration state of gadolinium - the metal used in most clinical MRI contrast agents. This novel class of gadolinium-based agents demonstrates superior performance compared to existing clinical agents, highlighting the potential of coiled coil ligands. Furthermore, when coordinated to copper, these ligands form complexes that challenge the conventional notion that copper is unsuitable for MRI contrast agents. These findings establish coiled coil ligands as a powerful platform for advancing contrast agent design.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.