Yasir Serag Alnor Gorafi, Izzat Sidahmed Ali Tahir, Hisashi Tsujimoto
{"title":"以普通小麦为背景,利用多重合成衍生物群体挖掘牛头羊的性状和基因","authors":"Yasir Serag Alnor Gorafi, Izzat Sidahmed Ali Tahir, Hisashi Tsujimoto","doi":"10.1002/plr2.20424","DOIUrl":null,"url":null,"abstract":"<p><i>Aegilops tauschii</i> represents a vast and rich resource for enhancing wheat (<i>Triticum aestivum</i> L.) genetic diversity by providing new alleles and genes for yield, climate resilience, and other important traits; however, its systematic exploration may not be assured due to many factors, including the wide genetic distance and dissimilarity to the hexaploid wheat. This study aims to describe and present the Multiple Synthetic Derivative (MSD) population for registration as a germplasm resource to mine desirable climate-smart traits or genes from <i>Ae. tauschii</i> more systematically and efficiently. The MSD population was developed by crossing and backcrossing the Japanese wheat cultivar, ‘Norin 61’ (N61) to 43 different primary synthetics (PS) derived from a diverse set of 43 <i>Ae. tauschii</i> accessions. Evaluation of the MSD population under various abiotic stresses including heat, drought, low nitrogen (N) and phosphorus (P), demonstrated wide phenotypic diversity for all traits including grain yield, biomass, days to heading, and stress tolerance index (STI). Across all environments, the maximum grain yield and biomass recorded by some MSD lines were always higher than that of the recurrent parent (N61) and both heat-stress adapted varieties, Goumria and Imam. The MSD population showed a wide range in days to heading. The maximum STIs for heat, drought, low N and P of some MSD lines were higher than that of N61, Goumria, and Imam. Our results indicated the usefulness and effectiveness of MSD population as a platform for mining and exploiting heat, drought, and nutrient-use efficient traits in a common hexaploid wheat background. Therefore, description and registration of the MSD population by Arid Land Research Center, Tottori University, Japan could greatly facilitate efficient mining climate-resilient traits in the background of hexaploid wheat lines derived from diverse <i>Ae. tauschii</i> accessions.</p>","PeriodicalId":16822,"journal":{"name":"Journal of Plant Registrations","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/plr2.20424","citationCount":"0","resultStr":"{\"title\":\"A Multiple Synthetic Derivatives population for mining Aegilops tauschii traits and genes in a background of common wheat\",\"authors\":\"Yasir Serag Alnor Gorafi, Izzat Sidahmed Ali Tahir, Hisashi Tsujimoto\",\"doi\":\"10.1002/plr2.20424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Aegilops tauschii</i> represents a vast and rich resource for enhancing wheat (<i>Triticum aestivum</i> L.) genetic diversity by providing new alleles and genes for yield, climate resilience, and other important traits; however, its systematic exploration may not be assured due to many factors, including the wide genetic distance and dissimilarity to the hexaploid wheat. This study aims to describe and present the Multiple Synthetic Derivative (MSD) population for registration as a germplasm resource to mine desirable climate-smart traits or genes from <i>Ae. tauschii</i> more systematically and efficiently. The MSD population was developed by crossing and backcrossing the Japanese wheat cultivar, ‘Norin 61’ (N61) to 43 different primary synthetics (PS) derived from a diverse set of 43 <i>Ae. tauschii</i> accessions. Evaluation of the MSD population under various abiotic stresses including heat, drought, low nitrogen (N) and phosphorus (P), demonstrated wide phenotypic diversity for all traits including grain yield, biomass, days to heading, and stress tolerance index (STI). Across all environments, the maximum grain yield and biomass recorded by some MSD lines were always higher than that of the recurrent parent (N61) and both heat-stress adapted varieties, Goumria and Imam. The MSD population showed a wide range in days to heading. The maximum STIs for heat, drought, low N and P of some MSD lines were higher than that of N61, Goumria, and Imam. Our results indicated the usefulness and effectiveness of MSD population as a platform for mining and exploiting heat, drought, and nutrient-use efficient traits in a common hexaploid wheat background. Therefore, description and registration of the MSD population by Arid Land Research Center, Tottori University, Japan could greatly facilitate efficient mining climate-resilient traits in the background of hexaploid wheat lines derived from diverse <i>Ae. tauschii</i> accessions.</p>\",\"PeriodicalId\":16822,\"journal\":{\"name\":\"Journal of Plant Registrations\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/plr2.20424\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Registrations\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20424\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Registrations","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/plr2.20424","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
A Multiple Synthetic Derivatives population for mining Aegilops tauschii traits and genes in a background of common wheat
Aegilops tauschii represents a vast and rich resource for enhancing wheat (Triticum aestivum L.) genetic diversity by providing new alleles and genes for yield, climate resilience, and other important traits; however, its systematic exploration may not be assured due to many factors, including the wide genetic distance and dissimilarity to the hexaploid wheat. This study aims to describe and present the Multiple Synthetic Derivative (MSD) population for registration as a germplasm resource to mine desirable climate-smart traits or genes from Ae. tauschii more systematically and efficiently. The MSD population was developed by crossing and backcrossing the Japanese wheat cultivar, ‘Norin 61’ (N61) to 43 different primary synthetics (PS) derived from a diverse set of 43 Ae. tauschii accessions. Evaluation of the MSD population under various abiotic stresses including heat, drought, low nitrogen (N) and phosphorus (P), demonstrated wide phenotypic diversity for all traits including grain yield, biomass, days to heading, and stress tolerance index (STI). Across all environments, the maximum grain yield and biomass recorded by some MSD lines were always higher than that of the recurrent parent (N61) and both heat-stress adapted varieties, Goumria and Imam. The MSD population showed a wide range in days to heading. The maximum STIs for heat, drought, low N and P of some MSD lines were higher than that of N61, Goumria, and Imam. Our results indicated the usefulness and effectiveness of MSD population as a platform for mining and exploiting heat, drought, and nutrient-use efficient traits in a common hexaploid wheat background. Therefore, description and registration of the MSD population by Arid Land Research Center, Tottori University, Japan could greatly facilitate efficient mining climate-resilient traits in the background of hexaploid wheat lines derived from diverse Ae. tauschii accessions.
期刊介绍:
The Journal of Plant Registrations is an official publication of the Crop Science Society of America and the premier international venue for plant breeders, geneticists, and genome biologists to publish research describing new and novel plant cultivars, germplasms, parental lines, genetic stocks, and genomic mapping populations. In addition to biomedical, nutritional, and agricultural scientists, the intended audience includes policy makers, humanitarian organizations, and all facets of food, feed, fiber, bioenergy, and shelter industries. The scope of articles includes (1) cultivar, germplasm, parental line, genetic stock, and mapping population registration manuscripts, (2) short manuscripts characterizing accessions held within Plant Germplasm Collection Systems, and (3) descriptions of plant genetic materials that have made a major impact on agricultural security. Registration of plant genetic resources, item (1) above, requires deposit of plant genetic material into the USDA ARS National Plant Germplasm System prior to publication.