混凝土坝渗流安全预测的AT-LSTM-CUSUM数字智能模型

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xinyu Liang, Lizhi Zhang, Jiaqi Zhao
{"title":"混凝土坝渗流安全预测的AT-LSTM-CUSUM数字智能模型","authors":"Xinyu Liang,&nbsp;Lizhi Zhang,&nbsp;Jiaqi Zhao","doi":"10.1155/stc/8518538","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Seepage is one of the main causes of dam accidents, characterized by long latency periods and spatiotemporal randomness. In this study, an innovative combined algorithm model (AT-LSTM-CUSUM) is proposed to predict such leakage hazards. First, a long short-term memory (LSTM) network model based on an attention mechanism is established to focus on key influencing factors in predicting the time series data. Following the time series prediction, an improved Cumulative Sum (CUSUM) change-point monitoring algorithm is introduced. Within a sliding window period, a control function collects cumulative residuals, and a threshold test is performed to determine whether a potential hazard trend exists. Using monitoring data from a pressure measuring pipe in a concrete dam as the experimental subject, five related influencing factors were collected (upstream and downstream water levels, temperature, precipitation, and structural aging). These data were fed into the AT-LSTM model for iterative parameter tuning, yielding optimal prediction results. These results were compared with those of the LSTM, GRU, ARIMA, and Prophet models, validating the superior performance of the AT-LSTM model. In addition, by simulating the seepage hazard occurrence process, the change-point monitoring effectiveness of the improved CUSUM algorithm was tested. A parameter sensitivity analysis of the window period and threshold values revealed that the algorithm performed effectively in detecting seepage hazards. The innovative algorithm proposed in this paper exhibits strong early warning capabilities and holds significant value for dam safety monitoring and maintenance.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8518538","citationCount":"0","resultStr":"{\"title\":\"AT-LSTM-CUSUM Digital Intelligent Model for Seepage Safety Prediction of Concrete Dam\",\"authors\":\"Xinyu Liang,&nbsp;Lizhi Zhang,&nbsp;Jiaqi Zhao\",\"doi\":\"10.1155/stc/8518538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Seepage is one of the main causes of dam accidents, characterized by long latency periods and spatiotemporal randomness. In this study, an innovative combined algorithm model (AT-LSTM-CUSUM) is proposed to predict such leakage hazards. First, a long short-term memory (LSTM) network model based on an attention mechanism is established to focus on key influencing factors in predicting the time series data. Following the time series prediction, an improved Cumulative Sum (CUSUM) change-point monitoring algorithm is introduced. Within a sliding window period, a control function collects cumulative residuals, and a threshold test is performed to determine whether a potential hazard trend exists. Using monitoring data from a pressure measuring pipe in a concrete dam as the experimental subject, five related influencing factors were collected (upstream and downstream water levels, temperature, precipitation, and structural aging). These data were fed into the AT-LSTM model for iterative parameter tuning, yielding optimal prediction results. These results were compared with those of the LSTM, GRU, ARIMA, and Prophet models, validating the superior performance of the AT-LSTM model. In addition, by simulating the seepage hazard occurrence process, the change-point monitoring effectiveness of the improved CUSUM algorithm was tested. A parameter sensitivity analysis of the window period and threshold values revealed that the algorithm performed effectively in detecting seepage hazards. The innovative algorithm proposed in this paper exhibits strong early warning capabilities and holds significant value for dam safety monitoring and maintenance.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8518538\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/8518538\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8518538","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

渗流是大坝事故发生的主要原因之一,具有潜伏期长、时空随机性强的特点。在本研究中,提出了一种创新的组合算法模型(AT-LSTM-CUSUM)来预测此类泄漏危害。首先,建立基于注意机制的长短期记忆(LSTM)网络模型,重点研究时间序列数据预测的关键影响因素。在时间序列预测的基础上,提出了一种改进的累积和(CUSUM)变点监测算法。在滑动窗口周期内,控制函数收集累积残差,并执行阈值检验以确定是否存在潜在危害趋势。以某混凝土大坝压力测量管监测数据为实验对象,收集了上下游水位、温度、降水、结构老化等5个相关影响因素。将这些数据输入到AT-LSTM模型中进行迭代参数整定,得到最优的预测结果。这些结果与LSTM、GRU、ARIMA和Prophet模型的结果进行了比较,验证了AT-LSTM模型的优越性能。此外,通过模拟渗流灾害发生过程,验证了改进CUSUM算法的变点监测有效性。对窗口期和阈值的参数敏感性分析表明,该算法能够有效地检测渗漏危害。本文提出的创新算法具有较强的预警能力,对大坝安全监测与维护具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AT-LSTM-CUSUM Digital Intelligent Model for Seepage Safety Prediction of Concrete Dam

AT-LSTM-CUSUM Digital Intelligent Model for Seepage Safety Prediction of Concrete Dam

Seepage is one of the main causes of dam accidents, characterized by long latency periods and spatiotemporal randomness. In this study, an innovative combined algorithm model (AT-LSTM-CUSUM) is proposed to predict such leakage hazards. First, a long short-term memory (LSTM) network model based on an attention mechanism is established to focus on key influencing factors in predicting the time series data. Following the time series prediction, an improved Cumulative Sum (CUSUM) change-point monitoring algorithm is introduced. Within a sliding window period, a control function collects cumulative residuals, and a threshold test is performed to determine whether a potential hazard trend exists. Using monitoring data from a pressure measuring pipe in a concrete dam as the experimental subject, five related influencing factors were collected (upstream and downstream water levels, temperature, precipitation, and structural aging). These data were fed into the AT-LSTM model for iterative parameter tuning, yielding optimal prediction results. These results were compared with those of the LSTM, GRU, ARIMA, and Prophet models, validating the superior performance of the AT-LSTM model. In addition, by simulating the seepage hazard occurrence process, the change-point monitoring effectiveness of the improved CUSUM algorithm was tested. A parameter sensitivity analysis of the window period and threshold values revealed that the algorithm performed effectively in detecting seepage hazards. The innovative algorithm proposed in this paper exhibits strong early warning capabilities and holds significant value for dam safety monitoring and maintenance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信