{"title":"简单而有效:年度飓风预报统计模型的比较研究","authors":"Pietro Colombo, Raffaele Mattera, Philipp Otto","doi":"10.1002/env.70009","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study the problem of forecasting the next year's number of Atlantic hurricanes, which is relevant in many fields of applications such as land-use planning, hazard mitigation, reinsurance and long-term weather derivative market. Considering a set of well-known predictors, we compare the forecasting accuracy of both machine learning and classical statistical models, showing that the latter may be more adequate than the first. Quantile regression models, which are adopted for the first time for forecasting hurricane numbers, provide the best results. Moreover, we construct a new index showing good properties in anticipating the direction of the future number of hurricanes. We consider different evaluation metrics based on both magnitude forecasting errors and directional accuracy.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70009","citationCount":"0","resultStr":"{\"title\":\"Simple Yet Effective: A Comparative Study of Statistical Models for Yearly Hurricane Forecasting\",\"authors\":\"Pietro Colombo, Raffaele Mattera, Philipp Otto\",\"doi\":\"10.1002/env.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study the problem of forecasting the next year's number of Atlantic hurricanes, which is relevant in many fields of applications such as land-use planning, hazard mitigation, reinsurance and long-term weather derivative market. Considering a set of well-known predictors, we compare the forecasting accuracy of both machine learning and classical statistical models, showing that the latter may be more adequate than the first. Quantile regression models, which are adopted for the first time for forecasting hurricane numbers, provide the best results. Moreover, we construct a new index showing good properties in anticipating the direction of the future number of hurricanes. We consider different evaluation metrics based on both magnitude forecasting errors and directional accuracy.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70009\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Simple Yet Effective: A Comparative Study of Statistical Models for Yearly Hurricane Forecasting
In this article, we study the problem of forecasting the next year's number of Atlantic hurricanes, which is relevant in many fields of applications such as land-use planning, hazard mitigation, reinsurance and long-term weather derivative market. Considering a set of well-known predictors, we compare the forecasting accuracy of both machine learning and classical statistical models, showing that the latter may be more adequate than the first. Quantile regression models, which are adopted for the first time for forecasting hurricane numbers, provide the best results. Moreover, we construct a new index showing good properties in anticipating the direction of the future number of hurricanes. We consider different evaluation metrics based on both magnitude forecasting errors and directional accuracy.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.