{"title":"用量子核k-均值探测介子对撞机的反常四次规范耦合","authors":"Shuai Zhang, Ke-Xin Chen, Ji-Chong Yang","doi":"10.1140/epjc/s10052-025-14069-1","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics (NP) phenomenological research. In order to improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means (QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using QKKM. Taking the <span>\\(\\mu ^+\\mu ^-\\rightarrow \\nu {\\bar{\\nu }}\\gamma \\gamma \\)</span> process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels, as well as the constraints obtained by the classical k-means algorithm are presented, and it can be shown that QKKM can help to find the signal of aQGCs. Comparing the classical k-means anomaly detection algorithm with QKKM, it is indicated that the QKKM is able to archive a better cut efficiency.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14069-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Detect anomalous quartic gauge couplings at muon colliders with quantum kernel k-means\",\"authors\":\"Shuai Zhang, Ke-Xin Chen, Ji-Chong Yang\",\"doi\":\"10.1140/epjc/s10052-025-14069-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics (NP) phenomenological research. In order to improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means (QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using QKKM. Taking the <span>\\\\(\\\\mu ^+\\\\mu ^-\\\\rightarrow \\\\nu {\\\\bar{\\\\nu }}\\\\gamma \\\\gamma \\\\)</span> process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels, as well as the constraints obtained by the classical k-means algorithm are presented, and it can be shown that QKKM can help to find the signal of aQGCs. Comparing the classical k-means anomaly detection algorithm with QKKM, it is indicated that the QKKM is able to archive a better cut efficiency.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14069-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14069-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14069-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Detect anomalous quartic gauge couplings at muon colliders with quantum kernel k-means
In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics (NP) phenomenological research. In order to improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means (QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using QKKM. Taking the \(\mu ^+\mu ^-\rightarrow \nu {\bar{\nu }}\gamma \gamma \) process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels, as well as the constraints obtained by the classical k-means algorithm are presented, and it can be shown that QKKM can help to find the signal of aQGCs. Comparing the classical k-means anomaly detection algorithm with QKKM, it is indicated that the QKKM is able to archive a better cut efficiency.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.