用于量子半监督学习的基于拉普拉斯的量子图神经网络

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Hamed Gholipour, Farid Bozorgnia, Kailash Hambarde, Hamzeh Mohammadigheymasi, Javier Mancilla, Andre Sequeira, João Neves, Hugo Proença, Moharram Challenger
{"title":"用于量子半监督学习的基于拉普拉斯的量子图神经网络","authors":"Hamed Gholipour,&nbsp;Farid Bozorgnia,&nbsp;Kailash Hambarde,&nbsp;Hamzeh Mohammadigheymasi,&nbsp;Javier Mancilla,&nbsp;Andre Sequeira,&nbsp;João Neves,&nbsp;Hugo Proença,&nbsp;Moharram Challenger","doi":"10.1007/s11128-025-04725-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets—Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04725-6.pdf","citationCount":"0","resultStr":"{\"title\":\"A Laplacian-based quantum graph neural networks for quantum semi-supervised learning\",\"authors\":\"Hamed Gholipour,&nbsp;Farid Bozorgnia,&nbsp;Kailash Hambarde,&nbsp;Hamzeh Mohammadigheymasi,&nbsp;Javier Mancilla,&nbsp;Andre Sequeira,&nbsp;João Neves,&nbsp;Hugo Proença,&nbsp;Moharram Challenger\",\"doi\":\"10.1007/s11128-025-04725-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets—Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-025-04725-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04725-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04725-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

拉普拉斯学习方法已被证明在经典的基于图的半监督学习中是有效的,但其量子对等体仍未得到充分探索。本研究系统地评估了基于拉普拉斯的量子半监督学习(QSSL)方法在四个基准数据集上的应用,包括虹膜、葡萄酒、威斯康星州乳腺癌和心脏病。通过实验不同的量子比特数和纠缠层,我们证明了增加的量子资源并不一定会导致性能的提高。我们的研究结果表明,该方法的有效性对数据集特征以及纠缠层的数量高度敏感。最优配置通常具有适度的纠缠,在模型复杂性和泛化之间取得平衡。这些结果强调了数据集特定超参数调优在量子半监督学习框架中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Laplacian-based quantum graph neural networks for quantum semi-supervised learning

The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets—Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信