有限窗口大小下的双方图可视化

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alon Efrat, William Evans, Kassian Köck, Stephen Kobourov, Jacob Miller
{"title":"有限窗口大小下的双方图可视化","authors":"Alon Efrat,&nbsp;William Evans,&nbsp;Kassian Köck,&nbsp;Stephen Kobourov,&nbsp;Jacob Miller","doi":"10.1007/s00236-025-00483-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"62 2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-025-00483-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Visualization of bipartite graphs in limited window size\",\"authors\":\"Alon Efrat,&nbsp;William Evans,&nbsp;Kassian Köck,&nbsp;Stephen Kobourov,&nbsp;Jacob Miller\",\"doi\":\"10.1007/s00236-025-00483-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.\\n</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"62 2\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-025-00483-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-025-00483-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-025-00483-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of bipartite graphs in limited window size

Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信