Alon Efrat, William Evans, Kassian Köck, Stephen Kobourov, Jacob Miller
{"title":"有限窗口大小下的双方图可视化","authors":"Alon Efrat, William Evans, Kassian Köck, Stephen Kobourov, Jacob Miller","doi":"10.1007/s00236-025-00483-1","DOIUrl":null,"url":null,"abstract":"<div><p>Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"62 2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-025-00483-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Visualization of bipartite graphs in limited window size\",\"authors\":\"Alon Efrat, William Evans, Kassian Köck, Stephen Kobourov, Jacob Miller\",\"doi\":\"10.1007/s00236-025-00483-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.\\n</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"62 2\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-025-00483-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-025-00483-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-025-00483-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Visualization of bipartite graphs in limited window size
Bipartite graphs are commonly used to visualize objects and their features. An object may possess several features and several objects may share a common feature. The standard visualization of bipartite graphs, with objects and features on two (say horizontal) parallel lines at integer coordinates and edges drawn as line segments, can often be difficult to work with. A common task in visualization of such graphs is to consider one object and all its features. This naturally defines a drawing window, defined as the smallest interval that contains the x-coordinates of the object and all its features. We show that if both objects and features can be reordered, minimizing the average window size is NP-hard. However, if the features are fixed, then we provide an efficient polynomial-time algorithm for arranging the objects, so as to minimize the average window size. Finally, we introduce a different way of visualizing the bipartite graph, by placing the nodes of the two parts on two concentric circles. For this setting we also show NP-hardness for the general case and a polynomial-time algorithm when the features are fixed.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.