希尔伯特空间中的多重和弱马尔可夫性质及其在分数阶随机演化方程中的应用

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Kristin Kirchner , Joshua Willems
{"title":"希尔伯特空间中的多重和弱马尔可夫性质及其在分数阶随机演化方程中的应用","authors":"Kristin Kirchner ,&nbsp;Joshua Willems","doi":"10.1016/j.spa.2025.104639","DOIUrl":null,"url":null,"abstract":"<div><div>We define a number of higher-order Markov properties for stochastic processes <span><math><msub><mrow><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span>, indexed by an interval <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>R</mi></mrow></math></span> and taking values in a real and separable Hilbert space <span><math><mi>U</mi></math></span>. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation <span><math><mrow><mi>L</mi><mi>X</mi><mo>=</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span>, where <span><math><mi>L</mi></math></span> is a linear operator acting on functions mapping from <span><math><mi>T</mi></math></span> to <span><math><mi>U</mi></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span> is the formal derivative of a <span><math><mi>U</mi></math></span>-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup><mspace></mspace><mi>L</mi></mrow></math></span>.</div><div>As an application, we consider the space–time fractional parabolic operator <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span> of order <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>−</mo><mi>A</mi></mrow></math></span> is a linear operator generating a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup on <span><math><mi>U</mi></math></span>. We prove that the resulting solution process satisfies an <span><math><mi>N</mi></math></span>th order Markov property if <span><math><mrow><mi>γ</mi><mo>=</mo><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and show that a necessary condition for the weakest Markov property is generally not satisfied if <span><math><mrow><mi>γ</mi><mo>∉</mo><mi>N</mi></mrow></math></span>. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if <span><math><mrow><mi>U</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for a spatial domain <span><math><mrow><mi>D</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mrow></math></span>. Secondly, we show that a <span><math><mi>U</mi></math></span>-valued analog to the fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> can be obtained as the limiting case of <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>ɛ</mi><mspace></mspace><msub><mrow><mi>Id</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>H</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mi>↓</mi><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104639"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations\",\"authors\":\"Kristin Kirchner ,&nbsp;Joshua Willems\",\"doi\":\"10.1016/j.spa.2025.104639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define a number of higher-order Markov properties for stochastic processes <span><math><msub><mrow><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span>, indexed by an interval <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>R</mi></mrow></math></span> and taking values in a real and separable Hilbert space <span><math><mi>U</mi></math></span>. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation <span><math><mrow><mi>L</mi><mi>X</mi><mo>=</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span>, where <span><math><mi>L</mi></math></span> is a linear operator acting on functions mapping from <span><math><mi>T</mi></math></span> to <span><math><mi>U</mi></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span> is the formal derivative of a <span><math><mi>U</mi></math></span>-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup><mspace></mspace><mi>L</mi></mrow></math></span>.</div><div>As an application, we consider the space–time fractional parabolic operator <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span> of order <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>−</mo><mi>A</mi></mrow></math></span> is a linear operator generating a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup on <span><math><mi>U</mi></math></span>. We prove that the resulting solution process satisfies an <span><math><mi>N</mi></math></span>th order Markov property if <span><math><mrow><mi>γ</mi><mo>=</mo><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and show that a necessary condition for the weakest Markov property is generally not satisfied if <span><math><mrow><mi>γ</mi><mo>∉</mo><mi>N</mi></mrow></math></span>. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if <span><math><mrow><mi>U</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for a spatial domain <span><math><mrow><mi>D</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mrow></math></span>. Secondly, we show that a <span><math><mi>U</mi></math></span>-valued analog to the fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> can be obtained as the limiting case of <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>ɛ</mi><mspace></mspace><msub><mrow><mi>Id</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>H</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mi>↓</mi><mn>0</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"186 \",\"pages\":\"Article 104639\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000808\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了随机过程(X(t))t∈t的若干高阶马尔可夫性质,该过程以区间t≥R为指标,取实可分Hilbert空间u中的值。特别地,对于随机演化方程LX=Ẇ的解,其中L是作用于从T映射到U的函数的线性算子,(Ẇ(T)) T∈T是U值圆柱Wiener过程的形式导数,我们通过精度算子L * L的局域性证明了最弱马尔可夫性质的充分必要条件。作为应用,我们考虑了阶γ∈(1/2,∞)的时空分数阶抛物算子L=(∂t+A)γ,其中−A是一个在u上生成c0半群的线性算子,证明了当γ=N∈N时解过程满足N阶马尔可夫性质,并证明了当γ∈N时一般不满足最弱马尔可夫性质的必要条件。这类过程的相关性是双重的:首先,对于空间域D哉Rd,如果U=L2(D),则可将其视为whittle - matn高斯随机场的时空推广。其次,我们证明了对于H∈(0,1)的分数阶布朗运动的u值模拟可以作为L=(∂t+ i i u)H+12对于i↓0的极限情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations
We define a number of higher-order Markov properties for stochastic processes (X(t))tT, indexed by an interval TR and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))tT is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator LL.
As an application, we consider the space–time fractional parabolic operator L=(t+A)γ of order γ(1/2,), where A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=NN and show that a necessary condition for the weakest Markov property is generally not satisfied if γN. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain DRd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H(0,1) can be obtained as the limiting case of L=(t+ɛIdU)H+12 for ɛ0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信