农业机器人视觉导航的转换模型

Abdelkrim Abanay , Lhoussaine Masmoudi , Dirar Benkhedra , Khalid El Amraoui , Mouataz Lghoul , Javier-Gonzalez Jimenez , Francisco-Angel Moreno
{"title":"农业机器人视觉导航的转换模型","authors":"Abdelkrim Abanay ,&nbsp;Lhoussaine Masmoudi ,&nbsp;Dirar Benkhedra ,&nbsp;Khalid El Amraoui ,&nbsp;Mouataz Lghoul ,&nbsp;Javier-Gonzalez Jimenez ,&nbsp;Francisco-Angel Moreno","doi":"10.1016/j.cogr.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a Top-view Transformation Model (TTM) for a vision-based autonomous navigation of an agricultural mobile robot. The TTM transforms images captured by an onboard camera into a virtual Top-view, eliminating perspective distortions such as the vanishing point effect and ensuring uniform pixel distribution. The transformed images are analyzed to ensure an autonomous navigation of the robot between crop rows. The navigation method involves real-time estimation of the robot's position relative to crop rows and the control low is derived from the estimated robot's heading and lateral offset for steering the robot along the crop rows. A simulated scenario has been generated in Gazebo in order to implement the developed approach using the Robot Operating System (ROS), while an evaluation on a real agricultural mobile robot has also been performed. The experimental results demonstrate the feasibility of the TTM approach and its implementation for autonomous navigation, reaching good performance.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 140-151"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformation model for vision-based navigation of agricultural robots\",\"authors\":\"Abdelkrim Abanay ,&nbsp;Lhoussaine Masmoudi ,&nbsp;Dirar Benkhedra ,&nbsp;Khalid El Amraoui ,&nbsp;Mouataz Lghoul ,&nbsp;Javier-Gonzalez Jimenez ,&nbsp;Francisco-Angel Moreno\",\"doi\":\"10.1016/j.cogr.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a Top-view Transformation Model (TTM) for a vision-based autonomous navigation of an agricultural mobile robot. The TTM transforms images captured by an onboard camera into a virtual Top-view, eliminating perspective distortions such as the vanishing point effect and ensuring uniform pixel distribution. The transformed images are analyzed to ensure an autonomous navigation of the robot between crop rows. The navigation method involves real-time estimation of the robot's position relative to crop rows and the control low is derived from the estimated robot's heading and lateral offset for steering the robot along the crop rows. A simulated scenario has been generated in Gazebo in order to implement the developed approach using the Robot Operating System (ROS), while an evaluation on a real agricultural mobile robot has also been performed. The experimental results demonstrate the feasibility of the TTM approach and its implementation for autonomous navigation, reaching good performance.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"5 \",\"pages\":\"Pages 140-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241325000072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于视觉的农业移动机器人自主导航俯视图转换模型。TTM将机载摄像机拍摄的图像转换为虚拟顶视图,消除了视角失真,如消失点效应,并确保均匀的像素分布。对变换后的图像进行分析,以确保机器人在作物行之间自主导航。导航方法包括实时估计机器人相对于作物行的位置,并且根据估计的机器人的航向和横向偏移量推导出控制低,以便沿着作物行的方向操纵机器人。为了利用机器人操作系统(ROS)实现所开发的方法,在Gazebo中生成了一个模拟场景,同时对一个真实的农业移动机器人进行了评估。实验结果证明了TTM方法及其在自主导航中的可行性,取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transformation model for vision-based navigation of agricultural robots
This paper presents a Top-view Transformation Model (TTM) for a vision-based autonomous navigation of an agricultural mobile robot. The TTM transforms images captured by an onboard camera into a virtual Top-view, eliminating perspective distortions such as the vanishing point effect and ensuring uniform pixel distribution. The transformed images are analyzed to ensure an autonomous navigation of the robot between crop rows. The navigation method involves real-time estimation of the robot's position relative to crop rows and the control low is derived from the estimated robot's heading and lateral offset for steering the robot along the crop rows. A simulated scenario has been generated in Gazebo in order to implement the developed approach using the Robot Operating System (ROS), while an evaluation on a real agricultural mobile robot has also been performed. The experimental results demonstrate the feasibility of the TTM approach and its implementation for autonomous navigation, reaching good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信