Kähler具有大对称性的梯度里奇孤子

IF 1.5 1区 数学 Q1 MATHEMATICS
Hung Tran
{"title":"Kähler具有大对称性的梯度里奇孤子","authors":"Hung Tran","doi":"10.1016/j.aim.2025.110253","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>J</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be an irreducible non-trivial Kähler gradient Ricci soliton of real dimension 2<em>n</em>. We show that its group of isometries is of dimension at most <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the case of equality is characterized. As a consequence, our framework shows the uniqueness of <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-invariant Kähler gradient Ricci solitons constructed earlier. There are corollaries regarding the groups of automorphisms or affine transformations and a general version for almost Hermitian GRS. The approach is based on a connection to the geometry of an almost contact metric structure.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110253"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kähler gradient Ricci solitons with large symmetry\",\"authors\":\"Hung Tran\",\"doi\":\"10.1016/j.aim.2025.110253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>J</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be an irreducible non-trivial Kähler gradient Ricci soliton of real dimension 2<em>n</em>. We show that its group of isometries is of dimension at most <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and the case of equality is characterized. As a consequence, our framework shows the uniqueness of <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-invariant Kähler gradient Ricci solitons constructed earlier. There are corollaries regarding the groups of automorphisms or affine transformations and a general version for almost Hermitian GRS. The approach is based on a connection to the geometry of an almost contact metric structure.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 110253\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001513\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001513","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(M,g,J,f)是一个实维2n的不可约非平凡Kähler梯度Ricci孤子。我们证明了它的等距组的维数不超过n2,并刻画了相等的情况。因此,我们的框架证明了先前构造的U(n)-不变Kähler梯度Ricci孤子的唯一性。这里有关于自同构群或仿射变换的推论,也有关于几乎厄密GRS的一般版本。该方法基于与几乎接触的度量结构的几何结构的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kähler gradient Ricci solitons with large symmetry
Let (M,g,J,f) be an irreducible non-trivial Kähler gradient Ricci soliton of real dimension 2n. We show that its group of isometries is of dimension at most n2 and the case of equality is characterized. As a consequence, our framework shows the uniqueness of U(n)-invariant Kähler gradient Ricci solitons constructed earlier. There are corollaries regarding the groups of automorphisms or affine transformations and a general version for almost Hermitian GRS. The approach is based on a connection to the geometry of an almost contact metric structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信