利用超声振动辅助变形加工(UVADM)定向毛刺形成表面微结构,以改善聚合物-金属结合

Mohammad Hossein Rezaei , Ingo Schaarschmidt , Hendrik Liborius , Niclas Hanisch , Philipp Steinert , Thomas Lampke , Andreas Schubert
{"title":"利用超声振动辅助变形加工(UVADM)定向毛刺形成表面微结构,以改善聚合物-金属结合","authors":"Mohammad Hossein Rezaei ,&nbsp;Ingo Schaarschmidt ,&nbsp;Hendrik Liborius ,&nbsp;Niclas Hanisch ,&nbsp;Philipp Steinert ,&nbsp;Thomas Lampke ,&nbsp;Andreas Schubert","doi":"10.1016/j.procir.2025.02.094","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-metal hybrids (PMH) are essential in lightweight industrial applications, particularly in the automotive and aerospace sectors. However, ensuring robust bonding between polymer and metal surfaces remains a significant challenge. Hence, surface microstructuring enables an improvement in adhesion due to mechanical interlocking. In this study, the microstructuring of the metallic surface by applying the Ultrasonic Vibration Assisted Deformational Machining (UVADM) process to enhance burr formation is analyzed. The research considers both the effect of a depth of cut (<em>a</em><sub>p</sub>) of 25 µm, and the combined influence of a superimposed Ultrasonic Vibration (UV). A 3D finite element method (FEM) simulation using ABAQUS/Explicit software was conducted to design and analyze the process conditions, including the tool geometry. The main focus of the analysis is the evolution and characterization of the burr structure. In order to consider the plastic deformation of the material, the Johnson-Cook material model was employed. Besides the FEM simulation, experimental validation was carried out using specimens made of EN AW-6082 aluminum alloy. Surface topography including burr formation was characterized using optical methods. The results demonstrate that the interaction between <em>a</em><sub>p</sub> and UV influences burr formation.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"133 ","pages":"Pages 549-554"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface microstructuring by targeted burr formation using Ultrasonic Vibration Assisted Deformational Machining (UVADM) for improving polymer-metal bonding\",\"authors\":\"Mohammad Hossein Rezaei ,&nbsp;Ingo Schaarschmidt ,&nbsp;Hendrik Liborius ,&nbsp;Niclas Hanisch ,&nbsp;Philipp Steinert ,&nbsp;Thomas Lampke ,&nbsp;Andreas Schubert\",\"doi\":\"10.1016/j.procir.2025.02.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer-metal hybrids (PMH) are essential in lightweight industrial applications, particularly in the automotive and aerospace sectors. However, ensuring robust bonding between polymer and metal surfaces remains a significant challenge. Hence, surface microstructuring enables an improvement in adhesion due to mechanical interlocking. In this study, the microstructuring of the metallic surface by applying the Ultrasonic Vibration Assisted Deformational Machining (UVADM) process to enhance burr formation is analyzed. The research considers both the effect of a depth of cut (<em>a</em><sub>p</sub>) of 25 µm, and the combined influence of a superimposed Ultrasonic Vibration (UV). A 3D finite element method (FEM) simulation using ABAQUS/Explicit software was conducted to design and analyze the process conditions, including the tool geometry. The main focus of the analysis is the evolution and characterization of the burr structure. In order to consider the plastic deformation of the material, the Johnson-Cook material model was employed. Besides the FEM simulation, experimental validation was carried out using specimens made of EN AW-6082 aluminum alloy. Surface topography including burr formation was characterized using optical methods. The results demonstrate that the interaction between <em>a</em><sub>p</sub> and UV influences burr formation.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"133 \",\"pages\":\"Pages 549-554\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125001908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125001908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物-金属混合材料(PMH)在轻量化工业应用中是必不可少的,特别是在汽车和航空航天领域。然而,确保聚合物和金属表面之间的牢固结合仍然是一个重大挑战。因此,由于机械联锁,表面微结构可以改善附着力。本研究分析了超声振动辅助变形加工(UVADM)工艺增强毛刺形成的金属表面微观组织。该研究考虑了25 μ m切割深度(ap)的影响,以及叠加超声振动(UV)的综合影响。利用ABAQUS/Explicit软件进行三维有限元模拟,设计并分析了加工条件,包括刀具几何形状。分析的主要重点是毛刺结构的演变和特征。为了考虑材料的塑性变形,采用Johnson-Cook材料模型。在有限元模拟的基础上,采用EN AW-6082铝合金试样进行了试验验证。表面形貌包括毛刺形成用光学方法表征。结果表明,ap和UV的相互作用影响毛刺的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface microstructuring by targeted burr formation using Ultrasonic Vibration Assisted Deformational Machining (UVADM) for improving polymer-metal bonding
Polymer-metal hybrids (PMH) are essential in lightweight industrial applications, particularly in the automotive and aerospace sectors. However, ensuring robust bonding between polymer and metal surfaces remains a significant challenge. Hence, surface microstructuring enables an improvement in adhesion due to mechanical interlocking. In this study, the microstructuring of the metallic surface by applying the Ultrasonic Vibration Assisted Deformational Machining (UVADM) process to enhance burr formation is analyzed. The research considers both the effect of a depth of cut (ap) of 25 µm, and the combined influence of a superimposed Ultrasonic Vibration (UV). A 3D finite element method (FEM) simulation using ABAQUS/Explicit software was conducted to design and analyze the process conditions, including the tool geometry. The main focus of the analysis is the evolution and characterization of the burr structure. In order to consider the plastic deformation of the material, the Johnson-Cook material model was employed. Besides the FEM simulation, experimental validation was carried out using specimens made of EN AW-6082 aluminum alloy. Surface topography including burr formation was characterized using optical methods. The results demonstrate that the interaction between ap and UV influences burr formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信