用单位圆盘精确覆盖

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ji Hoon Chun, Christian Kipp, Sandro Roch
{"title":"用单位圆盘精确覆盖","authors":"Ji Hoon Chun,&nbsp;Christian Kipp,&nbsp;Sandro Roch","doi":"10.1016/j.comgeo.2025.102193","DOIUrl":null,"url":null,"abstract":"<div><div>We study the problem of covering a given point set in the plane by unit disks so that each point is covered exactly once. We prove that 17 points can always be exactly covered. On the other hand, we construct a set of 657 points where an exact cover is not possible.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102193"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On exact covering with unit disks\",\"authors\":\"Ji Hoon Chun,&nbsp;Christian Kipp,&nbsp;Sandro Roch\",\"doi\":\"10.1016/j.comgeo.2025.102193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the problem of covering a given point set in the plane by unit disks so that each point is covered exactly once. We prove that 17 points can always be exactly covered. On the other hand, we construct a set of 657 points where an exact cover is not possible.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"129 \",\"pages\":\"Article 102193\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772125000318\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000318","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了用单位圆盘覆盖平面上给定点集的问题,使每个点只覆盖一次。我们证明了17个点总是可以被完全覆盖。另一方面,我们构造一个657个点的集合,其中精确的覆盖是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On exact covering with unit disks
We study the problem of covering a given point set in the plane by unit disks so that each point is covered exactly once. We prove that 17 points can always be exactly covered. On the other hand, we construct a set of 657 points where an exact cover is not possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信