Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides
{"title":"通过双层控制架构加强非线性过程的网络安全","authors":"Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides","doi":"10.1016/j.dche.2025.100233","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two nonlinear chemical process applications, including a benchmark chemical reactor example and one application modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer architecture.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100233"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing cybersecurity of nonlinear processes via a two-layer control architecture\",\"authors\":\"Arthur Khodaverdian , Dhruv Gohil , Panagiotis D. Christofides\",\"doi\":\"10.1016/j.dche.2025.100233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two nonlinear chemical process applications, including a benchmark chemical reactor example and one application modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer architecture.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"15 \",\"pages\":\"Article 100233\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508125000171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhancing cybersecurity of nonlinear processes via a two-layer control architecture
This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two nonlinear chemical process applications, including a benchmark chemical reactor example and one application modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer architecture.