调节fe掺杂CeVO4表面氧空位促进苯直接羟基化制苯酚

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yangzhou Deng, Kunkun Wei, Yuqi Zhang and Juanjuan Liu*, 
{"title":"调节fe掺杂CeVO4表面氧空位促进苯直接羟基化制苯酚","authors":"Yangzhou Deng,&nbsp;Kunkun Wei,&nbsp;Yuqi Zhang and Juanjuan Liu*,&nbsp;","doi":"10.1021/acs.jpcc.5c0104510.1021/acs.jpcc.5c01045","DOIUrl":null,"url":null,"abstract":"<p >Catalytic selectivity for producing target products is critical in chemical transformations via heterogeneous catalysis. Herein, the selectivity of direct hydroxylation of benzene to phenol has been evaluated over Fe-doped CeVO<sub>4</sub> catalysts with H<sub>2</sub>O<sub>2</sub> as the oxidant. By regulating the feeding ratio of V-to-Ce in a one-pot synthesis approach, we successfully synthesized Fe-CeVO<sub>4</sub> and Fe-CeO<sub>2</sub>–CeVO<sub>4</sub> with varying surface vacancies. Under optimal conditions, a phenol yield of 39.1% with a selectivity of 92.5% is achieved over Fe-CeO<sub>2</sub>–CeVO<sub>4</sub>, which is significantly higher than that observed with Fe-CeVO<sub>4</sub> and physical mixtures of Fe-CeVO<sub>4</sub> and CeO<sub>2</sub>. Characterizations, including X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and ammonia temperature-programmed desorption (NH<sub>3</sub>-TPD), suggest that the superior catalytic performance of Fe-CeO<sub>2</sub>–CeVO<sub>4</sub> arises from the reduction of surface vacancies and the formation of CeO<sub>2</sub> nanoparticles. These factors result in an increase in the Fe<sup>2+</sup> ratio and weak acid sites, which accelerate hydroxyl radical production to improve benzene conversion and hinder phenol adsorption/overoxidation, thereby promoting phenol selectivity in benzene hydroxylation.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 13","pages":"6308–6315 6308–6315"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Surface Oxygen Vacancies of Fe-Doped CeVO4 to Promote Direct Hydroxylation of Benzene to Phenol\",\"authors\":\"Yangzhou Deng,&nbsp;Kunkun Wei,&nbsp;Yuqi Zhang and Juanjuan Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c0104510.1021/acs.jpcc.5c01045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic selectivity for producing target products is critical in chemical transformations via heterogeneous catalysis. Herein, the selectivity of direct hydroxylation of benzene to phenol has been evaluated over Fe-doped CeVO<sub>4</sub> catalysts with H<sub>2</sub>O<sub>2</sub> as the oxidant. By regulating the feeding ratio of V-to-Ce in a one-pot synthesis approach, we successfully synthesized Fe-CeVO<sub>4</sub> and Fe-CeO<sub>2</sub>–CeVO<sub>4</sub> with varying surface vacancies. Under optimal conditions, a phenol yield of 39.1% with a selectivity of 92.5% is achieved over Fe-CeO<sub>2</sub>–CeVO<sub>4</sub>, which is significantly higher than that observed with Fe-CeVO<sub>4</sub> and physical mixtures of Fe-CeVO<sub>4</sub> and CeO<sub>2</sub>. Characterizations, including X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and ammonia temperature-programmed desorption (NH<sub>3</sub>-TPD), suggest that the superior catalytic performance of Fe-CeO<sub>2</sub>–CeVO<sub>4</sub> arises from the reduction of surface vacancies and the formation of CeO<sub>2</sub> nanoparticles. These factors result in an increase in the Fe<sup>2+</sup> ratio and weak acid sites, which accelerate hydroxyl radical production to improve benzene conversion and hinder phenol adsorption/overoxidation, thereby promoting phenol selectivity in benzene hydroxylation.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 13\",\"pages\":\"6308–6315 6308–6315\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01045\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01045","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在通过异相催化进行化学转化时,催化剂对目标产物的选择性至关重要。在此,我们以 H2O2 为氧化剂,评估了掺杂 Fe 的 CeVO4 催化剂将苯直接羟化成苯酚的选择性。通过调节一锅合成法中 V-Ce 的进料比,我们成功合成了具有不同表面空位的 Fe-CeVO4 和 Fe-CeO2-CeVO4。在最佳条件下,Fe-CeO2-CeVO4 的苯酚产率为 39.1%,选择性为 92.5%,明显高于 Fe-CeVO4 以及 Fe-CeVO4 和 CeO2 的物理混合物。包括 X 射线光电子能谱 (XPS)、电子顺磁共振 (EPR) 和氨气温度编程解吸 (NH3-TPD) 在内的特性分析表明,Fe-CeO2-CeVO4 的卓越催化性能源于表面空位的减少和 CeO2 纳米颗粒的形成。这些因素导致了 Fe2+ 比率和弱酸位点的增加,从而加速了羟基自由基的产生,提高了苯的转化率,阻碍了苯酚的吸附/过氧化,从而提高了苯羟基化过程中苯酚的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning Surface Oxygen Vacancies of Fe-Doped CeVO4 to Promote Direct Hydroxylation of Benzene to Phenol

Tuning Surface Oxygen Vacancies of Fe-Doped CeVO4 to Promote Direct Hydroxylation of Benzene to Phenol

Catalytic selectivity for producing target products is critical in chemical transformations via heterogeneous catalysis. Herein, the selectivity of direct hydroxylation of benzene to phenol has been evaluated over Fe-doped CeVO4 catalysts with H2O2 as the oxidant. By regulating the feeding ratio of V-to-Ce in a one-pot synthesis approach, we successfully synthesized Fe-CeVO4 and Fe-CeO2–CeVO4 with varying surface vacancies. Under optimal conditions, a phenol yield of 39.1% with a selectivity of 92.5% is achieved over Fe-CeO2–CeVO4, which is significantly higher than that observed with Fe-CeVO4 and physical mixtures of Fe-CeVO4 and CeO2. Characterizations, including X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and ammonia temperature-programmed desorption (NH3-TPD), suggest that the superior catalytic performance of Fe-CeO2–CeVO4 arises from the reduction of surface vacancies and the formation of CeO2 nanoparticles. These factors result in an increase in the Fe2+ ratio and weak acid sites, which accelerate hydroxyl radical production to improve benzene conversion and hinder phenol adsorption/overoxidation, thereby promoting phenol selectivity in benzene hydroxylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信