表面静电势粗糙度:影响锂在弯曲过渡金属二硫化物表面扩散的关键因素

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jian Chen, Yao Kang, Xudong Wang, Hao Huang and Man Yao*, 
{"title":"表面静电势粗糙度:影响锂在弯曲过渡金属二硫化物表面扩散的关键因素","authors":"Jian Chen,&nbsp;Yao Kang,&nbsp;Xudong Wang,&nbsp;Hao Huang and Man Yao*,&nbsp;","doi":"10.1021/acs.jpcc.4c0873110.1021/acs.jpcc.4c08731","DOIUrl":null,"url":null,"abstract":"<p >Tuning the nanoscale morphology and structure is a key strategy for enhancing the electrostatic performance of layered transition metal dichalcogenide (TMD) electrodes, where curved structures are inevitably introduced. A comprehensive understanding of the Li-ion diffusion mechanism in curved TMD structures at the atomic scale can guide the high-throughput design of nanoscale electrode materials. By first-principles calculations, we investigated the lithium diffusion in TMDs curved structure and factors resulting in the diffusion barrier variation. Our results demonstrate that the curved structure of TMDs enhances lithium diffusion compared to the planar structure, with the effect of bending on lithium diffusion being influenced by multiple factors. By extracting and analyzing the surface electrostatic potential curve perpendicular to the lithium diffusion path, we introduced the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> parameter to provide a unified explanation for the effect of bending on lithium diffusion, where <i>R</i><sub>Δ<i>q</i></sub> represents the roughness of the curve and <i>L</i> represents the projected length of the curve. For the same TMDs with varying curvature, the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> perpendicular to the diffusion path is positively correlated with the lithium diffusion barrier on this path. Our results deepen the understanding of the lithium diffusion mechanism for the TMD curved structure and promote the follow-up design of TMD-based electrodes.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 13","pages":"6074–6082 6074–6082"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Electrostatic Potential Roughness: A Crucial Factor Impacting Lithium Diffusion on Curved Transition Metal Dichalcogenide Surfaces\",\"authors\":\"Jian Chen,&nbsp;Yao Kang,&nbsp;Xudong Wang,&nbsp;Hao Huang and Man Yao*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0873110.1021/acs.jpcc.4c08731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tuning the nanoscale morphology and structure is a key strategy for enhancing the electrostatic performance of layered transition metal dichalcogenide (TMD) electrodes, where curved structures are inevitably introduced. A comprehensive understanding of the Li-ion diffusion mechanism in curved TMD structures at the atomic scale can guide the high-throughput design of nanoscale electrode materials. By first-principles calculations, we investigated the lithium diffusion in TMDs curved structure and factors resulting in the diffusion barrier variation. Our results demonstrate that the curved structure of TMDs enhances lithium diffusion compared to the planar structure, with the effect of bending on lithium diffusion being influenced by multiple factors. By extracting and analyzing the surface electrostatic potential curve perpendicular to the lithium diffusion path, we introduced the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> parameter to provide a unified explanation for the effect of bending on lithium diffusion, where <i>R</i><sub>Δ<i>q</i></sub> represents the roughness of the curve and <i>L</i> represents the projected length of the curve. For the same TMDs with varying curvature, the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> perpendicular to the diffusion path is positively correlated with the lithium diffusion barrier on this path. Our results deepen the understanding of the lithium diffusion mechanism for the TMD curved structure and promote the follow-up design of TMD-based electrodes.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 13\",\"pages\":\"6074–6082 6074–6082\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08731\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08731","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

调整纳米尺度的形态和结构是提高层状过渡金属二硫化物(TMD)电极静电性能的关键策略,其中不可避免地引入了弯曲结构。在原子尺度上全面了解锂离子在弯曲TMD结构中的扩散机制,可以指导纳米级电极材料的高通量设计。通过第一性原理计算,研究了锂离子在tmd弯曲结构中的扩散,以及影响扩散势垒变化的因素。结果表明,与平面结构相比,tmd的弯曲结构增强了锂的扩散,弯曲对锂扩散的影响受多种因素的影响。通过提取和分析垂直于锂扩散路径的表面静电势曲线,我们引入RΔq/L参数,统一解释弯曲对锂扩散的影响,其中RΔq表示曲线的粗糙度,L表示曲线的投影长度。对于相同曲率的tmd,垂直于扩散路径的RΔq/L与路径上的锂扩散势垒呈正相关。我们的研究结果加深了对TMD弯曲结构的锂扩散机制的理解,并促进了TMD电极的后续设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Electrostatic Potential Roughness: A Crucial Factor Impacting Lithium Diffusion on Curved Transition Metal Dichalcogenide Surfaces

Surface Electrostatic Potential Roughness: A Crucial Factor Impacting Lithium Diffusion on Curved Transition Metal Dichalcogenide Surfaces

Tuning the nanoscale morphology and structure is a key strategy for enhancing the electrostatic performance of layered transition metal dichalcogenide (TMD) electrodes, where curved structures are inevitably introduced. A comprehensive understanding of the Li-ion diffusion mechanism in curved TMD structures at the atomic scale can guide the high-throughput design of nanoscale electrode materials. By first-principles calculations, we investigated the lithium diffusion in TMDs curved structure and factors resulting in the diffusion barrier variation. Our results demonstrate that the curved structure of TMDs enhances lithium diffusion compared to the planar structure, with the effect of bending on lithium diffusion being influenced by multiple factors. By extracting and analyzing the surface electrostatic potential curve perpendicular to the lithium diffusion path, we introduced the RΔq/L parameter to provide a unified explanation for the effect of bending on lithium diffusion, where RΔq represents the roughness of the curve and L represents the projected length of the curve. For the same TMDs with varying curvature, the RΔq/L perpendicular to the diffusion path is positively correlated with the lithium diffusion barrier on this path. Our results deepen the understanding of the lithium diffusion mechanism for the TMD curved structure and promote the follow-up design of TMD-based electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信