Jihoon Na , Je Uk Kim , Seonggyu Kim , Chanwoo Kim , Gayoung Lee , Sumin Lee
{"title":"三组分立体选择性C-N键形成烯烃双官能化","authors":"Jihoon Na , Je Uk Kim , Seonggyu Kim , Chanwoo Kim , Gayoung Lee , Sumin Lee","doi":"10.1039/d5qo00160a","DOIUrl":null,"url":null,"abstract":"<div><div>Amines are essential functional groups in pharmaceuticals, agrochemicals, and bioactive molecules, with C(sp<sup>3</sup>)–N bonds playing a crucial role in enhancing biological activity and selectivity. Alkene difunctionalization offers a powerful strategy for constructing these bonds by introducing two distinct functional groups across a double bond in a single step. While two-component alkene difunctionalization has been widely studied, general three-component strategies for amine synthesis remain underdeveloped due to challenges in controlling regioselectivity, stereoselectivity, and competing side reactions. Recent advancements have addressed these limitations through transition-metal catalysis, directing-group-free methodologies, and radical-based mechanisms, enabling stereoselective synthesis of amines from readily available starting materials. This review discusses emerging strategies in three-component, stereoselective C–N bond-forming alkene difunctionalization, emphasizing mechanistic innovations and their impact on synthetic organic chemistry.</div></div>","PeriodicalId":94379,"journal":{"name":"Organic chemistry frontiers : an international journal of organic chemistry","volume":"12 13","pages":"Pages 3896-3919"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-component, stereoselective C–N bond forming alkene difunctionalization\",\"authors\":\"Jihoon Na , Je Uk Kim , Seonggyu Kim , Chanwoo Kim , Gayoung Lee , Sumin Lee\",\"doi\":\"10.1039/d5qo00160a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amines are essential functional groups in pharmaceuticals, agrochemicals, and bioactive molecules, with C(sp<sup>3</sup>)–N bonds playing a crucial role in enhancing biological activity and selectivity. Alkene difunctionalization offers a powerful strategy for constructing these bonds by introducing two distinct functional groups across a double bond in a single step. While two-component alkene difunctionalization has been widely studied, general three-component strategies for amine synthesis remain underdeveloped due to challenges in controlling regioselectivity, stereoselectivity, and competing side reactions. Recent advancements have addressed these limitations through transition-metal catalysis, directing-group-free methodologies, and radical-based mechanisms, enabling stereoselective synthesis of amines from readily available starting materials. This review discusses emerging strategies in three-component, stereoselective C–N bond-forming alkene difunctionalization, emphasizing mechanistic innovations and their impact on synthetic organic chemistry.</div></div>\",\"PeriodicalId\":94379,\"journal\":{\"name\":\"Organic chemistry frontiers : an international journal of organic chemistry\",\"volume\":\"12 13\",\"pages\":\"Pages 3896-3919\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic chemistry frontiers : an international journal of organic chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2052412925002694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic chemistry frontiers : an international journal of organic chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052412925002694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-component, stereoselective C–N bond forming alkene difunctionalization
Amines are essential functional groups in pharmaceuticals, agrochemicals, and bioactive molecules, with C(sp3)–N bonds playing a crucial role in enhancing biological activity and selectivity. Alkene difunctionalization offers a powerful strategy for constructing these bonds by introducing two distinct functional groups across a double bond in a single step. While two-component alkene difunctionalization has been widely studied, general three-component strategies for amine synthesis remain underdeveloped due to challenges in controlling regioselectivity, stereoselectivity, and competing side reactions. Recent advancements have addressed these limitations through transition-metal catalysis, directing-group-free methodologies, and radical-based mechanisms, enabling stereoselective synthesis of amines from readily available starting materials. This review discusses emerging strategies in three-component, stereoselective C–N bond-forming alkene difunctionalization, emphasizing mechanistic innovations and their impact on synthetic organic chemistry.