REDA:一种实时事件检测方法,以最大限度地减少物联网可视化数据的生成和计算效率

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Abid Sultan;Lin Yao;Xin Wang;Guowei Wu
{"title":"REDA:一种实时事件检测方法,以最大限度地减少物联网可视化数据的生成和计算效率","authors":"Abid Sultan;Lin Yao;Xin Wang;Guowei Wu","doi":"10.1109/JIOT.2025.3556872","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) offers vast potential to enhance the quality of life, but the excessive visual data generated during environmental monitoring presents significant challenges. Existing visual data minimization methods struggle with real-time data reduction, often applying uniform minimization ratios to compress already generated data, which leads to high computational overhead and distortion. To address these limitations, this article introduces REDA, a real-time event-driven approach for minimizing visual data generation. REDA employs an event estimation method that integrates motion and multiscale object detection to reduce false alarms, missed detections, and computational costs. Additionally, it introduces an Optimal-IoU loss function to handle gradient challenges and applies contextual optical flow and filtering techniques to minimize data loss and distortion. Theoretical analysis and experimental results demonstrate that REDA achieves superior real-time data minimization and efficiency compared to existing state-of-the-art solutions.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 13","pages":"24853-24867"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REDA: A Real-Time Event-Detection Approach to Minimize IoT Visual Data Generation With Computation Efficiency\",\"authors\":\"Abid Sultan;Lin Yao;Xin Wang;Guowei Wu\",\"doi\":\"10.1109/JIOT.2025.3556872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) offers vast potential to enhance the quality of life, but the excessive visual data generated during environmental monitoring presents significant challenges. Existing visual data minimization methods struggle with real-time data reduction, often applying uniform minimization ratios to compress already generated data, which leads to high computational overhead and distortion. To address these limitations, this article introduces REDA, a real-time event-driven approach for minimizing visual data generation. REDA employs an event estimation method that integrates motion and multiscale object detection to reduce false alarms, missed detections, and computational costs. Additionally, it introduces an Optimal-IoU loss function to handle gradient challenges and applies contextual optical flow and filtering techniques to minimize data loss and distortion. Theoretical analysis and experimental results demonstrate that REDA achieves superior real-time data minimization and efficiency compared to existing state-of-the-art solutions.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 13\",\"pages\":\"24853-24867\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10946996/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10946996/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)为提高生活质量提供了巨大的潜力,但环境监测过程中产生的过多视觉数据带来了重大挑战。现有的可视化数据最小化方法与实时数据缩减作斗争,通常使用统一的最小化比率来压缩已经生成的数据,这导致高计算开销和失真。为了解决这些限制,本文介绍了REDA,这是一种实时事件驱动的方法,用于最小化可视化数据生成。REDA采用了一种融合运动和多尺度目标检测的事件估计方法,以减少误报、漏检和计算成本。此外,它还引入了一个优化iou损失函数来处理梯度挑战,并应用上下文光流和滤波技术来最大限度地减少数据丢失和失真。理论分析和实验结果表明,与现有的最先进的解决方案相比,REDA实现了更高的实时数据最小化和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REDA: A Real-Time Event-Detection Approach to Minimize IoT Visual Data Generation With Computation Efficiency
The Internet of Things (IoT) offers vast potential to enhance the quality of life, but the excessive visual data generated during environmental monitoring presents significant challenges. Existing visual data minimization methods struggle with real-time data reduction, often applying uniform minimization ratios to compress already generated data, which leads to high computational overhead and distortion. To address these limitations, this article introduces REDA, a real-time event-driven approach for minimizing visual data generation. REDA employs an event estimation method that integrates motion and multiscale object detection to reduce false alarms, missed detections, and computational costs. Additionally, it introduces an Optimal-IoU loss function to handle gradient challenges and applies contextual optical flow and filtering techniques to minimize data loss and distortion. Theoretical analysis and experimental results demonstrate that REDA achieves superior real-time data minimization and efficiency compared to existing state-of-the-art solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Internet of Things Journal
IEEE Internet of Things Journal Computer Science-Information Systems
CiteScore
17.60
自引率
13.20%
发文量
1982
期刊介绍: The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信