{"title":"基于循环域几何积分去噪扩散概率模型的单x射线投影CBCT重建","authors":"Shaoyan Pan;Junbo Peng;Yuan Gao;Shao-Yuan Lo;Tianyu Luan;Junyuan Li;Tonghe Wang;Chih-Wei Chang;Zhen Tian;Xiaofeng Yang","doi":"10.1109/TMI.2025.3556402","DOIUrl":null,"url":null,"abstract":"In the sphere of Cone Beam Computed Tomography (CBCT), acquiring X-ray projections from sufficient angles is indispensable for traditional image reconstruction methods to accurately reconstruct 3D anatomical intricacies. However, this acquisition procedure for the linear accelerator-mounted CBCT systems in radiotherapy takes approximately one minute, impeding its use for ultra-fast intra-fractional motion monitoring during treatment delivery. To address this challenge, we introduce the Patient-specific Cycle-domain Geometric-integrated Denoising Diffusion Probabilistic Model (CG-DDPM). This model aims to leverage patient-specific priors from patient’s CT/4DCT images, which are acquired for treatment planning purposes, to reconstruct 3D CBCT from a single-view 2D CBCT projection of any arbitrary angle during treatment, namely single-view reconstructed CBCT (svCBCT). The CG-DDPM framework encompasses a dual DDPM structure: the Projection-DDPM for synthesizing comprehensive full-view projections and the CBCT-DDPM for creating CBCT images. A key innovation is our Cycle-Domain Geometry-Integrated (CDGI) method, incorporating a Cone Beam X-ray Geometric Transformation Module (GTM) to ensure precise, synergistic operation between the dual DDPMs, thereby enhancing reconstruction accuracy and reducing artifacts. Evaluated in a study involving 37 lung cancer patients, the method demonstrated its ability to reconstruct CBCT not only from simulated X-ray projections but also from real-world data. The CG-DDPM significantly outperforms existing V-shape convolutional neural networks (V-nets), Generative Adversarial Networks (GANs), and DDPM methods in terms of reconstruction fidelity and artifact minimization. This was confirmed through extensive voxel-level, structural, visual, and clinical assessments. The capability of CG-DDPM to generate high-quality reconstructed CBCT from a single-view projection at any arbitrary angle using a single model opens the door for ultra-fast, in-treatment volumetric imaging. This is especially beneficial for radiotherapy at motion-associated cancer sites and image-guided interventional procedures.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"2933-2947"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBCT Reconstruction Using Single X-Ray Projection With Cycle-Domain Geometry-Integrated Denoising Diffusion Probabilistic Models\",\"authors\":\"Shaoyan Pan;Junbo Peng;Yuan Gao;Shao-Yuan Lo;Tianyu Luan;Junyuan Li;Tonghe Wang;Chih-Wei Chang;Zhen Tian;Xiaofeng Yang\",\"doi\":\"10.1109/TMI.2025.3556402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the sphere of Cone Beam Computed Tomography (CBCT), acquiring X-ray projections from sufficient angles is indispensable for traditional image reconstruction methods to accurately reconstruct 3D anatomical intricacies. However, this acquisition procedure for the linear accelerator-mounted CBCT systems in radiotherapy takes approximately one minute, impeding its use for ultra-fast intra-fractional motion monitoring during treatment delivery. To address this challenge, we introduce the Patient-specific Cycle-domain Geometric-integrated Denoising Diffusion Probabilistic Model (CG-DDPM). This model aims to leverage patient-specific priors from patient’s CT/4DCT images, which are acquired for treatment planning purposes, to reconstruct 3D CBCT from a single-view 2D CBCT projection of any arbitrary angle during treatment, namely single-view reconstructed CBCT (svCBCT). The CG-DDPM framework encompasses a dual DDPM structure: the Projection-DDPM for synthesizing comprehensive full-view projections and the CBCT-DDPM for creating CBCT images. A key innovation is our Cycle-Domain Geometry-Integrated (CDGI) method, incorporating a Cone Beam X-ray Geometric Transformation Module (GTM) to ensure precise, synergistic operation between the dual DDPMs, thereby enhancing reconstruction accuracy and reducing artifacts. Evaluated in a study involving 37 lung cancer patients, the method demonstrated its ability to reconstruct CBCT not only from simulated X-ray projections but also from real-world data. The CG-DDPM significantly outperforms existing V-shape convolutional neural networks (V-nets), Generative Adversarial Networks (GANs), and DDPM methods in terms of reconstruction fidelity and artifact minimization. This was confirmed through extensive voxel-level, structural, visual, and clinical assessments. The capability of CG-DDPM to generate high-quality reconstructed CBCT from a single-view projection at any arbitrary angle using a single model opens the door for ultra-fast, in-treatment volumetric imaging. This is especially beneficial for radiotherapy at motion-associated cancer sites and image-guided interventional procedures.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 7\",\"pages\":\"2933-2947\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10946202/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10946202/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CBCT Reconstruction Using Single X-Ray Projection With Cycle-Domain Geometry-Integrated Denoising Diffusion Probabilistic Models
In the sphere of Cone Beam Computed Tomography (CBCT), acquiring X-ray projections from sufficient angles is indispensable for traditional image reconstruction methods to accurately reconstruct 3D anatomical intricacies. However, this acquisition procedure for the linear accelerator-mounted CBCT systems in radiotherapy takes approximately one minute, impeding its use for ultra-fast intra-fractional motion monitoring during treatment delivery. To address this challenge, we introduce the Patient-specific Cycle-domain Geometric-integrated Denoising Diffusion Probabilistic Model (CG-DDPM). This model aims to leverage patient-specific priors from patient’s CT/4DCT images, which are acquired for treatment planning purposes, to reconstruct 3D CBCT from a single-view 2D CBCT projection of any arbitrary angle during treatment, namely single-view reconstructed CBCT (svCBCT). The CG-DDPM framework encompasses a dual DDPM structure: the Projection-DDPM for synthesizing comprehensive full-view projections and the CBCT-DDPM for creating CBCT images. A key innovation is our Cycle-Domain Geometry-Integrated (CDGI) method, incorporating a Cone Beam X-ray Geometric Transformation Module (GTM) to ensure precise, synergistic operation between the dual DDPMs, thereby enhancing reconstruction accuracy and reducing artifacts. Evaluated in a study involving 37 lung cancer patients, the method demonstrated its ability to reconstruct CBCT not only from simulated X-ray projections but also from real-world data. The CG-DDPM significantly outperforms existing V-shape convolutional neural networks (V-nets), Generative Adversarial Networks (GANs), and DDPM methods in terms of reconstruction fidelity and artifact minimization. This was confirmed through extensive voxel-level, structural, visual, and clinical assessments. The capability of CG-DDPM to generate high-quality reconstructed CBCT from a single-view projection at any arbitrary angle using a single model opens the door for ultra-fast, in-treatment volumetric imaging. This is especially beneficial for radiotherapy at motion-associated cancer sites and image-guided interventional procedures.