基于连续特征噪声辅助平均教师知识精馏法的半监督膝关节软骨分割

Sheheryar Khan;Muhammad Ammar Khawer;Rizwan Qureshi;Mehmood Nawaz;Muhammad Asim;Weitian Chen;Hong Yan
{"title":"基于连续特征噪声辅助平均教师知识精馏法的半监督膝关节软骨分割","authors":"Sheheryar Khan;Muhammad Ammar Khawer;Rizwan Qureshi;Mehmood Nawaz;Muhammad Asim;Weitian Chen;Hong Yan","doi":"10.1109/TMI.2025.3556870","DOIUrl":null,"url":null,"abstract":"Knee cartilage segmentation for Knee Osteoarthritis (OA) diagnosis is challenging due to domain shifts from varying MRI scanning technologies. Existing cross-modality approaches often use paired order matching or style translation techniques to align features. Still, these methods can sacrifice discrimination in less prominent cartilages and overlook critical higher-order correlations and semantic information. To address this issue, we propose a novel framework called Successive Eigen Noise-assisted Mean Teacher Knowledge Distillation (SEN-MTKD) for adapting 2D knee MRI images across different modalities using partially labeled data. Our approach includes the Eigen Low-rank Subspace (ELRS) module, which employs low-rank approximations to generate meaningful pseudo-labels from domain-invariant feature representations progressively. Complementing this, the Successive Eigen Noise (SEN) module introduces advanced data perturbation to enhance discrimination and diversity in small cartilage classes. Additionally, we propose a subspace-based feature distillation loss mechanism (LRBD) to manage variance and leverage rich intermediate representations within the teacher model, ensuring robust feature representation and labeling. Our framework identifies a mutual cross-domain subspace using higher-order structures and lower energy latent features, providing reliable supervision for the student model. Extensive experiments on public and private datasets demonstrate the effectiveness of our method over state-of-the-art benchmarks. The code is available at github.com/AmmarKhawer/SEN-MTKD.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"3051-3063"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Knee Cartilage Segmentation With Successive Eigen Noise-Assisted Mean Teacher Knowledge Distillation\",\"authors\":\"Sheheryar Khan;Muhammad Ammar Khawer;Rizwan Qureshi;Mehmood Nawaz;Muhammad Asim;Weitian Chen;Hong Yan\",\"doi\":\"10.1109/TMI.2025.3556870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knee cartilage segmentation for Knee Osteoarthritis (OA) diagnosis is challenging due to domain shifts from varying MRI scanning technologies. Existing cross-modality approaches often use paired order matching or style translation techniques to align features. Still, these methods can sacrifice discrimination in less prominent cartilages and overlook critical higher-order correlations and semantic information. To address this issue, we propose a novel framework called Successive Eigen Noise-assisted Mean Teacher Knowledge Distillation (SEN-MTKD) for adapting 2D knee MRI images across different modalities using partially labeled data. Our approach includes the Eigen Low-rank Subspace (ELRS) module, which employs low-rank approximations to generate meaningful pseudo-labels from domain-invariant feature representations progressively. Complementing this, the Successive Eigen Noise (SEN) module introduces advanced data perturbation to enhance discrimination and diversity in small cartilage classes. Additionally, we propose a subspace-based feature distillation loss mechanism (LRBD) to manage variance and leverage rich intermediate representations within the teacher model, ensuring robust feature representation and labeling. Our framework identifies a mutual cross-domain subspace using higher-order structures and lower energy latent features, providing reliable supervision for the student model. Extensive experiments on public and private datasets demonstrate the effectiveness of our method over state-of-the-art benchmarks. The code is available at github.com/AmmarKhawer/SEN-MTKD.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 7\",\"pages\":\"3051-3063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947174/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于不同MRI扫描技术的域转移,膝关节软骨分割对膝关节骨关节炎(OA)的诊断具有挑战性。现有的跨模态方法通常使用成对顺序匹配或样式翻译技术来对齐特征。尽管如此,这些方法可能会牺牲对不太突出的软骨的区分,并忽略关键的高阶相关性和语义信息。为了解决这个问题,我们提出了一个新的框架,称为连续特征噪声辅助平均教师知识蒸馏(SEN-MTKD),用于使用部分标记数据适应不同模式的2D膝关节MRI图像。我们的方法包括特征低秩子空间(ELRS)模块,该模块采用低秩近似从域不变特征表示中逐步生成有意义的伪标签。作为补充,连续特征噪声(SEN)模块引入了先进的数据扰动,以增强小软骨类的辨别和多样性。此外,我们提出了一种基于子空间的特征蒸馏损失机制(LRBD)来管理方差,并在教师模型中利用丰富的中间表示,确保鲁棒的特征表示和标记。我们的框架使用高阶结构和低能量潜在特征识别相互跨域子空间,为学生模型提供可靠的监督。在公共和私人数据集上进行的大量实验证明了我们的方法在最先进的基准测试中的有效性。代码可在github.com/AmmarKhawer/SEN-MTKD上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Knee Cartilage Segmentation With Successive Eigen Noise-Assisted Mean Teacher Knowledge Distillation
Knee cartilage segmentation for Knee Osteoarthritis (OA) diagnosis is challenging due to domain shifts from varying MRI scanning technologies. Existing cross-modality approaches often use paired order matching or style translation techniques to align features. Still, these methods can sacrifice discrimination in less prominent cartilages and overlook critical higher-order correlations and semantic information. To address this issue, we propose a novel framework called Successive Eigen Noise-assisted Mean Teacher Knowledge Distillation (SEN-MTKD) for adapting 2D knee MRI images across different modalities using partially labeled data. Our approach includes the Eigen Low-rank Subspace (ELRS) module, which employs low-rank approximations to generate meaningful pseudo-labels from domain-invariant feature representations progressively. Complementing this, the Successive Eigen Noise (SEN) module introduces advanced data perturbation to enhance discrimination and diversity in small cartilage classes. Additionally, we propose a subspace-based feature distillation loss mechanism (LRBD) to manage variance and leverage rich intermediate representations within the teacher model, ensuring robust feature representation and labeling. Our framework identifies a mutual cross-domain subspace using higher-order structures and lower energy latent features, providing reliable supervision for the student model. Extensive experiments on public and private datasets demonstrate the effectiveness of our method over state-of-the-art benchmarks. The code is available at github.com/AmmarKhawer/SEN-MTKD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信