使用MRI放射组学和机器学习技术预测头颈癌放疗后并发症的一致性影响。

Medical physics Pub Date : 2025-03-31 DOI:10.1002/mp.17793
Benyamin Khajetash, Ghasem Hajianfar, Amin Talebi, Seid Rabi Mahdavi, Beth Ghavidel, Farshid Arbabi Kalati, Seyed Hadi Molana, Yang Lei, Meysam Tavakoli
{"title":"使用MRI放射组学和机器学习技术预测头颈癌放疗后并发症的一致性影响。","authors":"Benyamin Khajetash, Ghasem Hajianfar, Amin Talebi, Seid Rabi Mahdavi, Beth Ghavidel, Farshid Arbabi Kalati, Seyed Hadi Molana, Yang Lei, Meysam Tavakoli","doi":"10.1002/mp.17793","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Variations in medical images specific to individual scanners restrict the use of radiomics in both clinical practice and research. To create reproducible and generalizable radiomics-based models for outcome prediction and assessment, data harmonization is essential.</p><p><strong>Purpose: </strong>This study aims to investigate the impact of harmonization in performance of machine learning-based radiomics model toward the prediction of radiotherapy-induced toxicity (early and late sticky saliva and xerostomia) in head and neck cancer (HNC) patients after radiation therapy using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> and <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted magnetic resonance (MR) images.</p><p><strong>Methods: </strong>A total of 85 HNC patients who underwent radiotherapy was studied. Radiomic features were extracted from <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> and <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted MR images with standardized protocols. Data harmonization was performed using ComBat algorithm to reduce inter-center variability. Besides imaging features, both dosimetric and demographic features were extracted and used in our model. Recursive feature elimination was employed as feature selection method to identify the most important variables. Ten classification algorithms, including eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), support vector machines (SVM), random forest (RF), k-nearest neighbor (KNN), Naive Bayes (NB), logistic regression (LR), and decision tree (DT), boosted generalized linear model (GLMB), and stack learning (SL) were utilized and compared to develop predictive models. This evaluation comparisons were performed before and after harmonization to demonstrate its significance.</p><p><strong>Results: </strong>Our results indicate that harmonization consistently enhances predictive performance across various complications and imaging modalities. In early and late sticky saliva prediction using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> -weighted images, the SVM and RF models achieved an impressive area under the curve (AUC) of 0.88 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.09 and 0.97 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.05 with harmonization versus 0.42 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.12 and 0.83 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.08 without harmonization, respectively. Similarly, in early and late xerostomia prediction, the model attained an AUC of 0.79 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.15 and 0.61 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.14 with harmonization and 0.55 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.17 and 0.46 <math><semantics><mo>±</mo> <annotation>$\\pm$</annotation></semantics> </math> 0.14 without harmonization.</p><p><strong>Conclusion: </strong>Our study highlights the importance of harmonization techniques in improving the performance of predictive models utilizing magnetic resonance imaging radiomics features. While harmonization consistently enhanced performance for sticky saliva and early xerostomia using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> -weighted features, the prediction of early and late xerostomia using <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted features remains challenging. These findings try to develop accurate and reliable predictive models in medical imaging, that contribute to improve patient care and treatment outcomes.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of harmonization on predicting complications in head and neck cancer after radiotherapy using MRI radiomics and machine learning techniques.\",\"authors\":\"Benyamin Khajetash, Ghasem Hajianfar, Amin Talebi, Seid Rabi Mahdavi, Beth Ghavidel, Farshid Arbabi Kalati, Seyed Hadi Molana, Yang Lei, Meysam Tavakoli\",\"doi\":\"10.1002/mp.17793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Variations in medical images specific to individual scanners restrict the use of radiomics in both clinical practice and research. To create reproducible and generalizable radiomics-based models for outcome prediction and assessment, data harmonization is essential.</p><p><strong>Purpose: </strong>This study aims to investigate the impact of harmonization in performance of machine learning-based radiomics model toward the prediction of radiotherapy-induced toxicity (early and late sticky saliva and xerostomia) in head and neck cancer (HNC) patients after radiation therapy using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> and <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted magnetic resonance (MR) images.</p><p><strong>Methods: </strong>A total of 85 HNC patients who underwent radiotherapy was studied. Radiomic features were extracted from <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> and <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted MR images with standardized protocols. Data harmonization was performed using ComBat algorithm to reduce inter-center variability. Besides imaging features, both dosimetric and demographic features were extracted and used in our model. Recursive feature elimination was employed as feature selection method to identify the most important variables. Ten classification algorithms, including eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), support vector machines (SVM), random forest (RF), k-nearest neighbor (KNN), Naive Bayes (NB), logistic regression (LR), and decision tree (DT), boosted generalized linear model (GLMB), and stack learning (SL) were utilized and compared to develop predictive models. This evaluation comparisons were performed before and after harmonization to demonstrate its significance.</p><p><strong>Results: </strong>Our results indicate that harmonization consistently enhances predictive performance across various complications and imaging modalities. In early and late sticky saliva prediction using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> -weighted images, the SVM and RF models achieved an impressive area under the curve (AUC) of 0.88 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.09 and 0.97 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.05 with harmonization versus 0.42 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.12 and 0.83 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.08 without harmonization, respectively. Similarly, in early and late xerostomia prediction, the model attained an AUC of 0.79 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.15 and 0.61 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.14 with harmonization and 0.55 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.17 and 0.46 <math><semantics><mo>±</mo> <annotation>$\\\\pm$</annotation></semantics> </math> 0.14 without harmonization.</p><p><strong>Conclusion: </strong>Our study highlights the importance of harmonization techniques in improving the performance of predictive models utilizing magnetic resonance imaging radiomics features. While harmonization consistently enhanced performance for sticky saliva and early xerostomia using <math> <semantics><msub><mi>T</mi> <mn>1</mn></msub> <annotation>$T_1$</annotation></semantics> </math> -weighted features, the prediction of early and late xerostomia using <math> <semantics><msub><mi>T</mi> <mn>2</mn></msub> <annotation>$T_2$</annotation></semantics> </math> -weighted features remains challenging. These findings try to develop accurate and reliable predictive models in medical imaging, that contribute to improve patient care and treatment outcomes.</p>\",\"PeriodicalId\":94136,\"journal\":{\"name\":\"Medical physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mp.17793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:个体扫描仪的医学图像差异限制了放射组学在临床实践和研究中的应用。为了为结果预测和评估创建可重复和可推广的基于放射组学的模型,数据协调至关重要。目的:本研究旨在探讨基于机器学习的放射组学模型在使用t1 $T_1$和t2 $T_2$加权磁共振(MR)图像预测头颈癌(HNC)患者放疗后放疗引起的毒性(早期和晚期粘性唾液和口干)方面的一致性的影响。方法:对85例接受放疗的HNC患者进行研究。从t1 $T_1$和t2 $T_2$加权MR图像中提取放射学特征。采用ComBat算法进行数据协调,减少中心间的可变性。除了成像特征外,我们还提取了剂量学和人口统计学特征并将其用于我们的模型中。采用递归特征消去作为特征选择方法,识别出最重要的变量。利用极端梯度增强(XGBoost)、多层感知器(MLP)、支持向量机(SVM)、随机森林(RF)、k近邻(KNN)、朴素贝叶斯(NB)、逻辑回归(LR)、决策树(DT)、增强广义线性模型(GLMB)和堆栈学习(SL)等10种分类算法建立预测模型。在协调前后进行了评价比较,以证明其重要性。结果:我们的研究结果表明,协调一致地提高了各种并发症和成像方式的预测性能。在使用t1 $T_1$加权图像进行黏性唾液早期和晚期预测时,SVM和RF模型获得的曲线下面积(AUC)分别为0.88±$ $\pm$ 0.09和0.97±$ $\pm$ 0.05,而未经协调的AUC分别为0.42±$ $\pm$ 0.12和0.83±$ $\pm$ 0.08。同样,在早期和晚期口干症预测中,模型在协调下的AUC为0.79±$\pm$ 0.15和0.61±$\pm$ 0.14,而在未协调的情况下,模型的AUC为0.55±$\pm$ 0.17和0.46±$\pm$ 0.14。结论:我们的研究强调了协调技术在利用磁共振成像放射组学特征提高预测模型性能方面的重要性。虽然使用t1 $T_1$加权特征协调一致地增强了粘性唾液和早期口干的性能,但使用t2 $T_2$加权特征预测早期和晚期口干仍然具有挑战性。这些发现试图在医学成像中建立准确可靠的预测模型,有助于改善患者的护理和治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of harmonization on predicting complications in head and neck cancer after radiotherapy using MRI radiomics and machine learning techniques.

Background: Variations in medical images specific to individual scanners restrict the use of radiomics in both clinical practice and research. To create reproducible and generalizable radiomics-based models for outcome prediction and assessment, data harmonization is essential.

Purpose: This study aims to investigate the impact of harmonization in performance of machine learning-based radiomics model toward the prediction of radiotherapy-induced toxicity (early and late sticky saliva and xerostomia) in head and neck cancer (HNC) patients after radiation therapy using T 1 $T_1$ and T 2 $T_2$ -weighted magnetic resonance (MR) images.

Methods: A total of 85 HNC patients who underwent radiotherapy was studied. Radiomic features were extracted from T 1 $T_1$ and T 2 $T_2$ -weighted MR images with standardized protocols. Data harmonization was performed using ComBat algorithm to reduce inter-center variability. Besides imaging features, both dosimetric and demographic features were extracted and used in our model. Recursive feature elimination was employed as feature selection method to identify the most important variables. Ten classification algorithms, including eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), support vector machines (SVM), random forest (RF), k-nearest neighbor (KNN), Naive Bayes (NB), logistic regression (LR), and decision tree (DT), boosted generalized linear model (GLMB), and stack learning (SL) were utilized and compared to develop predictive models. This evaluation comparisons were performed before and after harmonization to demonstrate its significance.

Results: Our results indicate that harmonization consistently enhances predictive performance across various complications and imaging modalities. In early and late sticky saliva prediction using T 1 $T_1$ -weighted images, the SVM and RF models achieved an impressive area under the curve (AUC) of 0.88 ± $\pm$ 0.09 and 0.97 ± $\pm$ 0.05 with harmonization versus 0.42 ± $\pm$ 0.12 and 0.83 ± $\pm$ 0.08 without harmonization, respectively. Similarly, in early and late xerostomia prediction, the model attained an AUC of 0.79 ± $\pm$ 0.15 and 0.61 ± $\pm$ 0.14 with harmonization and 0.55 ± $\pm$ 0.17 and 0.46 ± $\pm$ 0.14 without harmonization.

Conclusion: Our study highlights the importance of harmonization techniques in improving the performance of predictive models utilizing magnetic resonance imaging radiomics features. While harmonization consistently enhanced performance for sticky saliva and early xerostomia using T 1 $T_1$ -weighted features, the prediction of early and late xerostomia using T 2 $T_2$ -weighted features remains challenging. These findings try to develop accurate and reliable predictive models in medical imaging, that contribute to improve patient care and treatment outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信