基于自监督深度学习和多模态可解释性的眼底摄影中视网膜动脉闭塞的自动检测

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sun Young Ryu, Joon Yul Choi, Tae Keun Yoo
{"title":"基于自监督深度学习和多模态可解释性的眼底摄影中视网膜动脉闭塞的自动检测","authors":"Sun Young Ryu, Joon Yul Choi, Tae Keun Yoo","doi":"10.1007/s11517-025-03353-7","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal artery occlusion (RAO) is a sight-threatening condition that requires prompt diagnosis to prevent irreversible vision loss. This study presents an innovative AI-driven approach for RAO detection from fundus images, marking the first application of deep learning for this purpose. Using a self-supervised learning (SSL) framework with SimCLR, our model addresses the challenge of limited labeled RAO data. The ResNet50 model pretrained with SimCLR demonstrated high diagnostic accuracy, achieving areas under the receiver operating characteristic curve (AUC) of 0.924 and 0.988 on two external validation datasets, highlighting its robustness and generalizability in RAO detection. To enhance transparency in clinical AI, we incorporated a multimodal interpretability approach using a ChatGPT-4-based AI chatbot. This chatbot, combined with Grad-CAM visualizations, provides detailed clinical explanations of the model's predictions, emphasizing key RAO features such as retinal whitening and cherry-red spots. This multimodal interpretability framework improves clinicians' understanding of the model's decision-making process, facilitating clinical adoption and trust. By automating RAO detection, this AI model serves as a valuable tool for the early identification of ocular and systemic vascular risks, enabling timely intervention. These findings highlight the potential of fundus imaging for RAO detection and broader cardiovascular risk assessment, advancing AI's role in predictive healthcare.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated detection of retinal artery occlusion in fundus photography via self-supervised deep learning and multimodal interpretability using a multimodal AI chatbot.\",\"authors\":\"Sun Young Ryu, Joon Yul Choi, Tae Keun Yoo\",\"doi\":\"10.1007/s11517-025-03353-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal artery occlusion (RAO) is a sight-threatening condition that requires prompt diagnosis to prevent irreversible vision loss. This study presents an innovative AI-driven approach for RAO detection from fundus images, marking the first application of deep learning for this purpose. Using a self-supervised learning (SSL) framework with SimCLR, our model addresses the challenge of limited labeled RAO data. The ResNet50 model pretrained with SimCLR demonstrated high diagnostic accuracy, achieving areas under the receiver operating characteristic curve (AUC) of 0.924 and 0.988 on two external validation datasets, highlighting its robustness and generalizability in RAO detection. To enhance transparency in clinical AI, we incorporated a multimodal interpretability approach using a ChatGPT-4-based AI chatbot. This chatbot, combined with Grad-CAM visualizations, provides detailed clinical explanations of the model's predictions, emphasizing key RAO features such as retinal whitening and cherry-red spots. This multimodal interpretability framework improves clinicians' understanding of the model's decision-making process, facilitating clinical adoption and trust. By automating RAO detection, this AI model serves as a valuable tool for the early identification of ocular and systemic vascular risks, enabling timely intervention. These findings highlight the potential of fundus imaging for RAO detection and broader cardiovascular risk assessment, advancing AI's role in predictive healthcare.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03353-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03353-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

视网膜动脉闭塞(RAO)是一种威胁视力的疾病,需要及时诊断以防止不可逆的视力丧失。本研究提出了一种创新的人工智能驱动方法,用于眼底图像的RAO检测,标志着深度学习在这方面的首次应用。使用SimCLR的自监督学习(SSL)框架,我们的模型解决了有限标记RAO数据的挑战。采用SimCLR预训练的ResNet50模型具有较高的诊断准确率,在两个外部验证数据集上的受试者工作特征曲线下面积(AUC)分别为0.924和0.988,突出了其在RAO检测中的鲁棒性和泛化性。为了提高临床人工智能的透明度,我们采用了基于chatgpt -4的人工智能聊天机器人的多模态可解释性方法。这个聊天机器人结合了Grad-CAM的可视化,为模型的预测提供了详细的临床解释,强调了RAO的关键特征,如视网膜美白和樱桃红点。这种多模态可解释性框架提高了临床医生对模型决策过程的理解,促进了临床采用和信任。通过自动化RAO检测,该AI模型可作为早期识别眼部和全身血管风险,及时干预的宝贵工具。这些发现强调了眼底成像在RAO检测和更广泛的心血管风险评估方面的潜力,推进了人工智能在预测性医疗保健中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated detection of retinal artery occlusion in fundus photography via self-supervised deep learning and multimodal interpretability using a multimodal AI chatbot.

Retinal artery occlusion (RAO) is a sight-threatening condition that requires prompt diagnosis to prevent irreversible vision loss. This study presents an innovative AI-driven approach for RAO detection from fundus images, marking the first application of deep learning for this purpose. Using a self-supervised learning (SSL) framework with SimCLR, our model addresses the challenge of limited labeled RAO data. The ResNet50 model pretrained with SimCLR demonstrated high diagnostic accuracy, achieving areas under the receiver operating characteristic curve (AUC) of 0.924 and 0.988 on two external validation datasets, highlighting its robustness and generalizability in RAO detection. To enhance transparency in clinical AI, we incorporated a multimodal interpretability approach using a ChatGPT-4-based AI chatbot. This chatbot, combined with Grad-CAM visualizations, provides detailed clinical explanations of the model's predictions, emphasizing key RAO features such as retinal whitening and cherry-red spots. This multimodal interpretability framework improves clinicians' understanding of the model's decision-making process, facilitating clinical adoption and trust. By automating RAO detection, this AI model serves as a valuable tool for the early identification of ocular and systemic vascular risks, enabling timely intervention. These findings highlight the potential of fundus imaging for RAO detection and broader cardiovascular risk assessment, advancing AI's role in predictive healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信