Matej Fonović, Jelena Zagorac, Maria Čebela, Dragana Jordanov, Dejan Zagorac
{"title":"一种新型氧化锌半导体的发现:21R多型。","authors":"Matej Fonović, Jelena Zagorac, Maria Čebela, Dragana Jordanov, Dejan Zagorac","doi":"10.1063/4.0000296","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide (ZnO) is a notable semiconductor with a range of interesting electronic and optical properties. Polytypic behavior of crystal structures can strongly affect the properties of materials, especially in ZnO. We report the first prediction of a new 21R polytype in zinc oxide with advanced properties. Ab initio calculations were carried out using two-hybrid functionals: HSE06 and PBE0. Structural properties of different ZnO polytypes were investigated, and theoretical data concurred with experimental results. This can be further exploited for various applications based on their unique properties. Electronic properties were studied using band structures and density of states (DOS). Present DFT calculations agree very well with previous calculations and measurements of known ZnO polytypes, and the new 21R polytype is found as a direct band gap semiconductor. The size of the band gap in the case of the hybrid HSE06 functional is calculated to be 2.79 eV and with PBE0 is 3.42 eV. Understanding the structure-property relationship helps in tailoring ZnO for specific applications and optimizing its performance in various technological contexts, especially as an advanced semiconductor material, with possible applications such as 0D, 1D, 2D, and 3D materials.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 2","pages":"024101"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952831/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of a new zinc oxide semiconductor: 21R polytype.\",\"authors\":\"Matej Fonović, Jelena Zagorac, Maria Čebela, Dragana Jordanov, Dejan Zagorac\",\"doi\":\"10.1063/4.0000296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc oxide (ZnO) is a notable semiconductor with a range of interesting electronic and optical properties. Polytypic behavior of crystal structures can strongly affect the properties of materials, especially in ZnO. We report the first prediction of a new 21R polytype in zinc oxide with advanced properties. Ab initio calculations were carried out using two-hybrid functionals: HSE06 and PBE0. Structural properties of different ZnO polytypes were investigated, and theoretical data concurred with experimental results. This can be further exploited for various applications based on their unique properties. Electronic properties were studied using band structures and density of states (DOS). Present DFT calculations agree very well with previous calculations and measurements of known ZnO polytypes, and the new 21R polytype is found as a direct band gap semiconductor. The size of the band gap in the case of the hybrid HSE06 functional is calculated to be 2.79 eV and with PBE0 is 3.42 eV. Understanding the structure-property relationship helps in tailoring ZnO for specific applications and optimizing its performance in various technological contexts, especially as an advanced semiconductor material, with possible applications such as 0D, 1D, 2D, and 3D materials.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"12 2\",\"pages\":\"024101\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952831/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000296\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000296","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Discovery of a new zinc oxide semiconductor: 21R polytype.
Zinc oxide (ZnO) is a notable semiconductor with a range of interesting electronic and optical properties. Polytypic behavior of crystal structures can strongly affect the properties of materials, especially in ZnO. We report the first prediction of a new 21R polytype in zinc oxide with advanced properties. Ab initio calculations were carried out using two-hybrid functionals: HSE06 and PBE0. Structural properties of different ZnO polytypes were investigated, and theoretical data concurred with experimental results. This can be further exploited for various applications based on their unique properties. Electronic properties were studied using band structures and density of states (DOS). Present DFT calculations agree very well with previous calculations and measurements of known ZnO polytypes, and the new 21R polytype is found as a direct band gap semiconductor. The size of the band gap in the case of the hybrid HSE06 functional is calculated to be 2.79 eV and with PBE0 is 3.42 eV. Understanding the structure-property relationship helps in tailoring ZnO for specific applications and optimizing its performance in various technological contexts, especially as an advanced semiconductor material, with possible applications such as 0D, 1D, 2D, and 3D materials.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.