一个连接体操作框架,通过模拟对结构-功能关系进行系统和可重复的研究。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00429
Christoph Pokorny, Omar Awile, James B Isbister, Kerem Kurban, Matthias Wolf, Michael W Reimann
{"title":"一个连接体操作框架,通过模拟对结构-功能关系进行系统和可重复的研究。","authors":"Christoph Pokorny, Omar Awile, James B Isbister, Kerem Kurban, Matthias Wolf, Michael W Reimann","doi":"10.1162/netn_a_00429","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic connectivity at the neuronal level is characterized by highly nonrandom features. Hypotheses about their role can be developed by correlating structural metrics to functional features. But, to prove causation, manipulations of connectivity would have to be studied. However, the fine-grained scale at which nonrandom trends are expressed makes this approach challenging to pursue experimentally. Simulations of neuronal networks provide an alternative route to study arbitrarily complex manipulations in morphologically and biophysically detailed models. Here, we present Connectome-Manipulator, a Python framework for rapid connectome manipulations of large-scale network models in Scalable Open Network Architecture TemplAte (SONATA) format. In addition to creating or manipulating the connectome of a model, it provides tools to fit parameters of stochastic connectivity models against existing connectomes. This enables rapid replacement of any existing connectome with equivalent connectomes at different levels of complexity, or transplantation of connectivity features from one connectome to another, for systematic study. We employed the framework in the detailed model of the rat somatosensory cortex in two exemplary use cases: transplanting interneuron connectivity trends from electron microscopy data and creating simplified connectomes of excitatory connectivity. We ran a series of network simulations and found diverse shifts in the activity of individual neuron populations causally linked to these manipulations.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"207-236"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949583/pdf/","citationCount":"0","resultStr":"{\"title\":\"A connectome manipulation framework for the systematic and reproducible study of structure-function relationships through simulations.\",\"authors\":\"Christoph Pokorny, Omar Awile, James B Isbister, Kerem Kurban, Matthias Wolf, Michael W Reimann\",\"doi\":\"10.1162/netn_a_00429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synaptic connectivity at the neuronal level is characterized by highly nonrandom features. Hypotheses about their role can be developed by correlating structural metrics to functional features. But, to prove causation, manipulations of connectivity would have to be studied. However, the fine-grained scale at which nonrandom trends are expressed makes this approach challenging to pursue experimentally. Simulations of neuronal networks provide an alternative route to study arbitrarily complex manipulations in morphologically and biophysically detailed models. Here, we present Connectome-Manipulator, a Python framework for rapid connectome manipulations of large-scale network models in Scalable Open Network Architecture TemplAte (SONATA) format. In addition to creating or manipulating the connectome of a model, it provides tools to fit parameters of stochastic connectivity models against existing connectomes. This enables rapid replacement of any existing connectome with equivalent connectomes at different levels of complexity, or transplantation of connectivity features from one connectome to another, for systematic study. We employed the framework in the detailed model of the rat somatosensory cortex in two exemplary use cases: transplanting interneuron connectivity trends from electron microscopy data and creating simplified connectomes of excitatory connectivity. We ran a series of network simulations and found diverse shifts in the activity of individual neuron populations causally linked to these manipulations.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 1\",\"pages\":\"207-236\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00429\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00429","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经元水平的突触连通性具有高度的非随机特征。通过将结构度量与功能特征相关联,可以对它们的作用进行假设。但是,为了证明因果关系,必须研究连接的操纵。然而,表达非随机趋势的细粒度尺度使得这种方法在实验中具有挑战性。神经网络的模拟为研究任意复杂的形态学和生物物理详细模型提供了另一种途径。在这里,我们提出了connectome - manipulator,这是一个Python框架,用于可扩展开放网络架构模板(SONATA)格式的大规模网络模型的快速连接体操作。除了创建或操作模型的连接体之外,它还提供了针对现有连接体拟合随机连接模型参数的工具。这使得用不同复杂程度的等效连接体快速替换任何现有的连接体,或将连接特征从一个连接体移植到另一个连接体,以进行系统研究。我们在大鼠体感觉皮层的详细模型中采用了该框架,用于两个示例用例:从电子显微镜数据移植中间神经元连接趋势和创建简化的兴奋性连接体。我们进行了一系列网络模拟,发现单个神经元群活动的不同变化与这些操作有因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A connectome manipulation framework for the systematic and reproducible study of structure-function relationships through simulations.

Synaptic connectivity at the neuronal level is characterized by highly nonrandom features. Hypotheses about their role can be developed by correlating structural metrics to functional features. But, to prove causation, manipulations of connectivity would have to be studied. However, the fine-grained scale at which nonrandom trends are expressed makes this approach challenging to pursue experimentally. Simulations of neuronal networks provide an alternative route to study arbitrarily complex manipulations in morphologically and biophysically detailed models. Here, we present Connectome-Manipulator, a Python framework for rapid connectome manipulations of large-scale network models in Scalable Open Network Architecture TemplAte (SONATA) format. In addition to creating or manipulating the connectome of a model, it provides tools to fit parameters of stochastic connectivity models against existing connectomes. This enables rapid replacement of any existing connectome with equivalent connectomes at different levels of complexity, or transplantation of connectivity features from one connectome to another, for systematic study. We employed the framework in the detailed model of the rat somatosensory cortex in two exemplary use cases: transplanting interneuron connectivity trends from electron microscopy data and creating simplified connectomes of excitatory connectivity. We ran a series of network simulations and found diverse shifts in the activity of individual neuron populations causally linked to these manipulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信