双状态模型动态功能连接参数的重测可靠性。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-20 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00437
Xiaojing Fang, Michael Marxen
{"title":"双状态模型动态功能连接参数的重测可靠性。","authors":"Xiaojing Fang, Michael Marxen","doi":"10.1162/netn_a_00437","DOIUrl":null,"url":null,"abstract":"<p><p>Reliability of imaging parameters is of pivotal importance for further correlation analyses. Here, we investigated the test-retest reliability of two dynamic functional connectivity (dFC) brain states and related parameters for different scan length, atlases with 116 versus 442 regions, and data centering in 23 participants and reproduced the findings in 501 subjects of the Human Connectome Project. Results showed an integrated and a segregated brain state with high intraclass correlation coefficient (ICC) values of the states between sessions (0.67 ≥ ICC ≥ 0.99). The most reliable dFC parameter was state prevalence with an ICC ≈ 0.5 for ∼15 min of uncentered data, while other parameters, such as mean dwell time, were much less reliable. While shorter scans and within-subject data centering further reduce reliability, the atlas choice had no effects. Spearman's correlations among dFC parameters strongly depend on data centering. The effect of global signal regression and a higher number of states is discussed. In conclusion, we recommend formulating hypotheses on cross-sectional differences and correlations between dFC measures of brain integration and other subject-specific measures in terms of state prevalence, especially in small-scale studies.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"371-391"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Test-retest reliability of dynamic functional connectivity parameters for a two-state model.\",\"authors\":\"Xiaojing Fang, Michael Marxen\",\"doi\":\"10.1162/netn_a_00437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reliability of imaging parameters is of pivotal importance for further correlation analyses. Here, we investigated the test-retest reliability of two dynamic functional connectivity (dFC) brain states and related parameters for different scan length, atlases with 116 versus 442 regions, and data centering in 23 participants and reproduced the findings in 501 subjects of the Human Connectome Project. Results showed an integrated and a segregated brain state with high intraclass correlation coefficient (ICC) values of the states between sessions (0.67 ≥ ICC ≥ 0.99). The most reliable dFC parameter was state prevalence with an ICC ≈ 0.5 for ∼15 min of uncentered data, while other parameters, such as mean dwell time, were much less reliable. While shorter scans and within-subject data centering further reduce reliability, the atlas choice had no effects. Spearman's correlations among dFC parameters strongly depend on data centering. The effect of global signal regression and a higher number of states is discussed. In conclusion, we recommend formulating hypotheses on cross-sectional differences and correlations between dFC measures of brain integration and other subject-specific measures in terms of state prevalence, especially in small-scale studies.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 1\",\"pages\":\"371-391\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00437\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00437","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

成像参数的可靠性对进一步的相关性分析至关重要。在此,我们研究了23名参与者在不同扫描长度、116区和442区地图集以及数据中心的情况下,两种动态功能连接(dFC)脑状态及其相关参数的重测可靠性,并在501名人类连接组项目(Human Connectome Project)受试者中重现了研究结果。结果显示,脑状态具有整合性和隔离性,且会话间状态的类内相关系数(ICC)值较高(0.67≥ICC≥0.99)。最可靠的dFC参数是状态流行率,对于非中心数据的~ 15分钟,ICC≈0.5,而其他参数,如平均停留时间,可靠性要低得多。虽然较短的扫描时间和受试者内部数据中心进一步降低了可靠性,但地图集的选择没有影响。斯皮尔曼的dFC参数之间的相关性强烈依赖于数据中心。讨论了全局信号回归和高状态数的影响。总之,我们建议就脑整合的dFC测量值与其他特定受试者测量值之间的横截面差异和相关性提出假设,特别是在小规模研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test-retest reliability of dynamic functional connectivity parameters for a two-state model.

Reliability of imaging parameters is of pivotal importance for further correlation analyses. Here, we investigated the test-retest reliability of two dynamic functional connectivity (dFC) brain states and related parameters for different scan length, atlases with 116 versus 442 regions, and data centering in 23 participants and reproduced the findings in 501 subjects of the Human Connectome Project. Results showed an integrated and a segregated brain state with high intraclass correlation coefficient (ICC) values of the states between sessions (0.67 ≥ ICC ≥ 0.99). The most reliable dFC parameter was state prevalence with an ICC ≈ 0.5 for ∼15 min of uncentered data, while other parameters, such as mean dwell time, were much less reliable. While shorter scans and within-subject data centering further reduce reliability, the atlas choice had no effects. Spearman's correlations among dFC parameters strongly depend on data centering. The effect of global signal regression and a higher number of states is discussed. In conclusion, we recommend formulating hypotheses on cross-sectional differences and correlations between dFC measures of brain integration and other subject-specific measures in terms of state prevalence, especially in small-scale studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信