利用患者特异性全脑模型定位头皮脑电图的致痫网络。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00418
Mihai Dragos Maliia, Elif Köksal-Ersöz, Adrien Benard, Tristan Calas, Anca Nica, Yves Denoyer, Maxime Yochum, Fabrice Wendling, Pascal Benquet
{"title":"利用患者特异性全脑模型定位头皮脑电图的致痫网络。","authors":"Mihai Dragos Maliia, Elif Köksal-Ersöz, Adrien Benard, Tristan Calas, Anca Nica, Yves Denoyer, Maxime Yochum, Fabrice Wendling, Pascal Benquet","doi":"10.1162/netn_a_00418","DOIUrl":null,"url":null,"abstract":"<p><p>Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"18-37"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949544/pdf/","citationCount":"0","resultStr":"{\"title\":\"Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model.\",\"authors\":\"Mihai Dragos Maliia, Elif Köksal-Ersöz, Adrien Benard, Tristan Calas, Anca Nica, Yves Denoyer, Maxime Yochum, Fabrice Wendling, Pascal Benquet\",\"doi\":\"10.1162/netn_a_00418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 1\",\"pages\":\"18-37\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949544/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00418\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00418","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

计算模型是阐明癫痫活动背后的神经元机制的关键工具。尽管取得了相当大的进展,但现有的模型在表示电生理癫痫活动方面往往缺乏现实的准确性。在这项研究中,我们使用了基于神经质量模型的综合人脑模型,该模型针对新皮层的分层结构量身定制,并结合了患者特定的成像数据。这种方法可以模拟患有2型局灶性皮质发育不良(FCD)的癫痫患者的头皮脑电图。该模拟专门针对FCD诱导的癫痫活动,忠实地再现了脑皮质电图记录的颅内间歇癫痫样放电(ied)。为了构建患者特异性头皮脑电图,我们通过数值模拟仔细定义了癫痫区的清晰描绘,以确保忠于ied的地形,极性和扩散特征。这种细致的方法提高了模拟脑电图信号的准确性,提供了更准确的癫痫活动表征,并增强了我们对致痫网络背后机制的理解。该模型的准确性通过术后二次脑电图模拟的重新评估得到证实,该模拟与病变切除一致。最终,这种个性化的方法可能有助于优化和定制癫痫治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model.

Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信