人线粒体呼吸整体膜巨复合物的结构生物信息学研究及其AlphaFold3预测水溶性QTY巨复合物类似物。

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.1017/qrd.2025.2
Edward Chen, Shuguang Zhang
{"title":"人线粒体呼吸整体膜巨复合物的结构生物信息学研究及其AlphaFold3预测水溶性QTY巨复合物类似物。","authors":"Edward Chen, Shuguang Zhang","doi":"10.1017/qrd.2025.2","DOIUrl":null,"url":null,"abstract":"<p><p>Human mitochondrial Complex I is one of the largest multi-subunit membrane protein megacomplexes, which plays a critical role in oxidative phosphorylation and ATP production. It is also involved in many neurodegenerative diseases. However, studying its structure and the mechanisms underlying proton translocation remains challenging due to the hydrophobic nature of its transmembrane parts. In this structural bioinformatic study, we used the QTY code to reduce the hydrophobicity of megacomplex I, while preserving its structure and function. We carried out the structural bioinformatics analysis of 20 key enzymes in the integral membrane parts. We compare their native structure, experimentally determined using Cryo-electron microscopy (CryoEM), with their water-soluble QTY analogs predicted using AlphaFold 3. Leveraging AlphaFold 3's advanced capabilities in predicting protein-protein complex interactions, we further explore whether the QTY-code integral membrane proteins maintain their protein-protein interactions necessary to form the functional megacomplex. Our structural bioinformatics analysis not only demonstrates the feasibility of engineering water-soluble integral membrane proteins using the QTY code, but also highlights the potential to use the water-soluble membrane protein QTY analogs as soluble antigens for discovery of therapeutic monoclonal antibodies, thus offering promising implications for the treatment of various neurodegenerative diseases.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"6 ","pages":"e12"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural bioinformatic study of human mitochondrial respiratory integral membrane megacomplex and its AlphaFold3 predicted water-soluble QTY megacomplex analog.\",\"authors\":\"Edward Chen, Shuguang Zhang\",\"doi\":\"10.1017/qrd.2025.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human mitochondrial Complex I is one of the largest multi-subunit membrane protein megacomplexes, which plays a critical role in oxidative phosphorylation and ATP production. It is also involved in many neurodegenerative diseases. However, studying its structure and the mechanisms underlying proton translocation remains challenging due to the hydrophobic nature of its transmembrane parts. In this structural bioinformatic study, we used the QTY code to reduce the hydrophobicity of megacomplex I, while preserving its structure and function. We carried out the structural bioinformatics analysis of 20 key enzymes in the integral membrane parts. We compare their native structure, experimentally determined using Cryo-electron microscopy (CryoEM), with their water-soluble QTY analogs predicted using AlphaFold 3. Leveraging AlphaFold 3's advanced capabilities in predicting protein-protein complex interactions, we further explore whether the QTY-code integral membrane proteins maintain their protein-protein interactions necessary to form the functional megacomplex. Our structural bioinformatics analysis not only demonstrates the feasibility of engineering water-soluble integral membrane proteins using the QTY code, but also highlights the potential to use the water-soluble membrane protein QTY analogs as soluble antigens for discovery of therapeutic monoclonal antibodies, thus offering promising implications for the treatment of various neurodegenerative diseases.</p>\",\"PeriodicalId\":34636,\"journal\":{\"name\":\"QRB Discovery\",\"volume\":\"6 \",\"pages\":\"e12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QRB Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qrd.2025.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2025.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

人线粒体复合体I是最大的多亚基膜蛋白巨复合体之一,在氧化磷酸化和ATP生成中起关键作用。它还与许多神经退行性疾病有关。然而,由于其跨膜部分的疏水性,研究其结构和质子易位的机制仍然具有挑战性。在这项结构生物信息学研究中,我们使用QTY编码降低了megaccomplexes I的疏水性,同时保留了其结构和功能。我们对完整膜部分的20个关键酶进行了结构生物信息学分析。我们比较了用低温电子显微镜(CryoEM)实验确定的它们的天然结构,以及用AlphaFold 3预测的水溶性QTY类似物。利用AlphaFold 3预测蛋白-蛋白复合体相互作用的先进能力,我们进一步探索qty编码的完整膜蛋白是否维持形成功能性巨复合体所需的蛋白-蛋白相互作用。我们的结构生物信息学分析不仅证明了利用QTY编码工程水溶性完整膜蛋白的可行性,而且强调了利用水溶性膜蛋白QTY类似物作为可溶性抗原发现治疗性单克隆抗体的潜力,从而为治疗各种神经退行性疾病提供了有希望的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural bioinformatic study of human mitochondrial respiratory integral membrane megacomplex and its AlphaFold3 predicted water-soluble QTY megacomplex analog.

Human mitochondrial Complex I is one of the largest multi-subunit membrane protein megacomplexes, which plays a critical role in oxidative phosphorylation and ATP production. It is also involved in many neurodegenerative diseases. However, studying its structure and the mechanisms underlying proton translocation remains challenging due to the hydrophobic nature of its transmembrane parts. In this structural bioinformatic study, we used the QTY code to reduce the hydrophobicity of megacomplex I, while preserving its structure and function. We carried out the structural bioinformatics analysis of 20 key enzymes in the integral membrane parts. We compare their native structure, experimentally determined using Cryo-electron microscopy (CryoEM), with their water-soluble QTY analogs predicted using AlphaFold 3. Leveraging AlphaFold 3's advanced capabilities in predicting protein-protein complex interactions, we further explore whether the QTY-code integral membrane proteins maintain their protein-protein interactions necessary to form the functional megacomplex. Our structural bioinformatics analysis not only demonstrates the feasibility of engineering water-soluble integral membrane proteins using the QTY code, but also highlights the potential to use the water-soluble membrane protein QTY analogs as soluble antigens for discovery of therapeutic monoclonal antibodies, thus offering promising implications for the treatment of various neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信