Hsin-Yueh Liang, Kai-Cheng Hsu, Shang-Yu Chien, Chen-Yu Yeh, Ting-Hsuan Sun, Meng-Hsuan Liu, Kee Koon Ng
{"title":"运动应激心电图的深度学习分析用于识别重大冠状动脉疾病。","authors":"Hsin-Yueh Liang, Kai-Cheng Hsu, Shang-Yu Chien, Chen-Yu Yeh, Ting-Hsuan Sun, Meng-Hsuan Liu, Kee Koon Ng","doi":"10.3389/frai.2025.1496109","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diagnostic power of exercise stress electrocardiography (ExECG) remains limited. We aimed to construct an artificial intelligence (AI)-based method to enhance ExECG performance to identify patients with significant coronary artery disease (CAD).</p><p><strong>Methods: </strong>We retrospectively collected 818 patients who underwent both ExECG and coronary angiography (CAG) within 6 months. The mean age was 57.0 ± 10.1 years, and 614 (75%) were male patients. Significant coronary artery disease was seen in 369 (43.8%) CAG reports. We also included 197 individuals with normal ExECG and low risk of CAD. A convolutional recurrent neural network algorithm, integrating electrocardiographic (ECG) signals and features from ExECG reports, was developed to predict the risk of significant CAD. We also investigated the optimal number of inputted ECG signal slices and features and the weighting of features for model performance.</p><p><strong>Results: </strong>Using the data of patients undergoing CAG for training and test sets, our algorithm had an area under the curve, sensitivity, and specificity of 0.74, 0.86, and 0.47, respectively, which increased to 0.83, 0.89, and 0.60, respectively, after enrolling 197 subjects with low risk of CAD. Three ECG signal slices and 12 features yielded optimal performance metrics. The principal predictive feature variables were sex, maximum heart rate, and ST/HR index. Our model generated results within one minute after completing ExECG.</p><p><strong>Conclusion: </strong>The multimodal AI algorithm, leveraging deep learning techniques, efficiently and accurately identifies patients with significant CAD using ExECG data, aiding clinical screening in both symptomatic and asymptomatic patients. Nevertheless, the specificity remains moderate (0.60), suggesting a potential for false positives and highlighting the need for further investigation.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1496109"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning analysis of exercise stress electrocardiography for identification of significant coronary artery disease.\",\"authors\":\"Hsin-Yueh Liang, Kai-Cheng Hsu, Shang-Yu Chien, Chen-Yu Yeh, Ting-Hsuan Sun, Meng-Hsuan Liu, Kee Koon Ng\",\"doi\":\"10.3389/frai.2025.1496109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The diagnostic power of exercise stress electrocardiography (ExECG) remains limited. We aimed to construct an artificial intelligence (AI)-based method to enhance ExECG performance to identify patients with significant coronary artery disease (CAD).</p><p><strong>Methods: </strong>We retrospectively collected 818 patients who underwent both ExECG and coronary angiography (CAG) within 6 months. The mean age was 57.0 ± 10.1 years, and 614 (75%) were male patients. Significant coronary artery disease was seen in 369 (43.8%) CAG reports. We also included 197 individuals with normal ExECG and low risk of CAD. A convolutional recurrent neural network algorithm, integrating electrocardiographic (ECG) signals and features from ExECG reports, was developed to predict the risk of significant CAD. We also investigated the optimal number of inputted ECG signal slices and features and the weighting of features for model performance.</p><p><strong>Results: </strong>Using the data of patients undergoing CAG for training and test sets, our algorithm had an area under the curve, sensitivity, and specificity of 0.74, 0.86, and 0.47, respectively, which increased to 0.83, 0.89, and 0.60, respectively, after enrolling 197 subjects with low risk of CAD. Three ECG signal slices and 12 features yielded optimal performance metrics. The principal predictive feature variables were sex, maximum heart rate, and ST/HR index. Our model generated results within one minute after completing ExECG.</p><p><strong>Conclusion: </strong>The multimodal AI algorithm, leveraging deep learning techniques, efficiently and accurately identifies patients with significant CAD using ExECG data, aiding clinical screening in both symptomatic and asymptomatic patients. Nevertheless, the specificity remains moderate (0.60), suggesting a potential for false positives and highlighting the need for further investigation.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1496109\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1496109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1496109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep learning analysis of exercise stress electrocardiography for identification of significant coronary artery disease.
Background: The diagnostic power of exercise stress electrocardiography (ExECG) remains limited. We aimed to construct an artificial intelligence (AI)-based method to enhance ExECG performance to identify patients with significant coronary artery disease (CAD).
Methods: We retrospectively collected 818 patients who underwent both ExECG and coronary angiography (CAG) within 6 months. The mean age was 57.0 ± 10.1 years, and 614 (75%) were male patients. Significant coronary artery disease was seen in 369 (43.8%) CAG reports. We also included 197 individuals with normal ExECG and low risk of CAD. A convolutional recurrent neural network algorithm, integrating electrocardiographic (ECG) signals and features from ExECG reports, was developed to predict the risk of significant CAD. We also investigated the optimal number of inputted ECG signal slices and features and the weighting of features for model performance.
Results: Using the data of patients undergoing CAG for training and test sets, our algorithm had an area under the curve, sensitivity, and specificity of 0.74, 0.86, and 0.47, respectively, which increased to 0.83, 0.89, and 0.60, respectively, after enrolling 197 subjects with low risk of CAD. Three ECG signal slices and 12 features yielded optimal performance metrics. The principal predictive feature variables were sex, maximum heart rate, and ST/HR index. Our model generated results within one minute after completing ExECG.
Conclusion: The multimodal AI algorithm, leveraging deep learning techniques, efficiently and accurately identifies patients with significant CAD using ExECG data, aiding clinical screening in both symptomatic and asymptomatic patients. Nevertheless, the specificity remains moderate (0.60), suggesting a potential for false positives and highlighting the need for further investigation.