用假设驱动的可解释人工智能解释遗传变异。

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-29 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf029
Federica De Paoli, Giovanna Nicora, Silvia Berardelli, Andrea Gazzo, Riccardo Bellazzi, Paolo Magni, Ettore Rizzo, Ivan Limongelli, Susanna Zucca
{"title":"用假设驱动的可解释人工智能解释遗传变异。","authors":"Federica De Paoli, Giovanna Nicora, Silvia Berardelli, Andrea Gazzo, Riccardo Bellazzi, Paolo Magni, Ettore Rizzo, Ivan Limongelli, Susanna Zucca","doi":"10.1093/nargab/lqaf029","DOIUrl":null,"url":null,"abstract":"<p><p>The digenic inheritance hypothesis holds the potential to enhance diagnostic yield in rare diseases. Computational approaches capable of accurately interpreting and prioritizing digenic combinations of variants based on the proband's phenotypes and family information can provide valuable assistance during the diagnostic process. We developed diVas, a hypothesis-driven machine learning approach that interprets genomic variants across different gene pairs. DiVas demonstrates strong performance in both classifying and prioritizing causative digenic combinations of rare variants within the top positions across 11 cases with the complete list of variants available (73% sensitivity and a median ranking of 3). Furthermore, it achieves a sensitivity of 0.81 when applied to 645 published causative digenic combinations. Additionally, diVas leverages explainable artificial intelligence to elucidate the digenic disease mechanism for predicted positive pairs.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf029"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954523/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digenic variant interpretation with hypothesis-driven explainable AI.\",\"authors\":\"Federica De Paoli, Giovanna Nicora, Silvia Berardelli, Andrea Gazzo, Riccardo Bellazzi, Paolo Magni, Ettore Rizzo, Ivan Limongelli, Susanna Zucca\",\"doi\":\"10.1093/nargab/lqaf029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The digenic inheritance hypothesis holds the potential to enhance diagnostic yield in rare diseases. Computational approaches capable of accurately interpreting and prioritizing digenic combinations of variants based on the proband's phenotypes and family information can provide valuable assistance during the diagnostic process. We developed diVas, a hypothesis-driven machine learning approach that interprets genomic variants across different gene pairs. DiVas demonstrates strong performance in both classifying and prioritizing causative digenic combinations of rare variants within the top positions across 11 cases with the complete list of variants available (73% sensitivity and a median ranking of 3). Furthermore, it achieves a sensitivity of 0.81 when applied to 645 published causative digenic combinations. Additionally, diVas leverages explainable artificial intelligence to elucidate the digenic disease mechanism for predicted positive pairs.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 2\",\"pages\":\"lqaf029\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基因遗传假说有可能提高罕见病的诊断率。基于先证者的表型和家族信息,能够准确解释和优先排序变异基因组合的计算方法可以在诊断过程中提供有价值的帮助。我们开发了diVas,这是一种假设驱动的机器学习方法,可以解释不同基因对之间的基因组变异。DiVas在11个具有完整变异列表的病例中,对顶级罕见变异的致病基因组合进行分类和优先排序方面表现出色(灵敏度为73%,中位排名为3)。此外,当应用于645个已发表的致病基因组合时,DiVas的灵敏度为0.81。此外,diVas利用可解释的人工智能来阐明预测阳性对的遗传疾病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Digenic variant interpretation with hypothesis-driven explainable AI.

Digenic variant interpretation with hypothesis-driven explainable AI.

Digenic variant interpretation with hypothesis-driven explainable AI.

Digenic variant interpretation with hypothesis-driven explainable AI.

The digenic inheritance hypothesis holds the potential to enhance diagnostic yield in rare diseases. Computational approaches capable of accurately interpreting and prioritizing digenic combinations of variants based on the proband's phenotypes and family information can provide valuable assistance during the diagnostic process. We developed diVas, a hypothesis-driven machine learning approach that interprets genomic variants across different gene pairs. DiVas demonstrates strong performance in both classifying and prioritizing causative digenic combinations of rare variants within the top positions across 11 cases with the complete list of variants available (73% sensitivity and a median ranking of 3). Furthermore, it achieves a sensitivity of 0.81 when applied to 645 published causative digenic combinations. Additionally, diVas leverages explainable artificial intelligence to elucidate the digenic disease mechanism for predicted positive pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信