Na Han, Rui Miao, Dongwei Chen, Jinrui Fan, Lin Chen, Siyao Yue, Tao Tan, Bowen Yang, Yapeng Wang
{"title":"基于变压器和二次迁移学习的胸部和甲状腺CT早期甲状腺筛查模型。","authors":"Na Han, Rui Miao, Dongwei Chen, Jinrui Fan, Lin Chen, Siyao Yue, Tao Tan, Bowen Yang, Yapeng Wang","doi":"10.1177/15330338251323168","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionThyroid cancer is a common malignant tumor, and early diagnosis and timely treatment are crucial to improve patient prognosis. With the increasing use of enhanced CT scans, a new opportunity for early thyroid cancer screening has emerged. However, existing CT-based models face challenges due to limited datasets, small sample sizes, and high noise.MethodsTo address these challenges, we collected enhanced CT scan image data from 240 patients in Guangdong and Xinjiang, China, and established a CT dataset for early thyroid cancer screening. We propose a deep learning model, the DVT model, which combines transformer DNN and transfer learning techniques to integrate time series data and address small sample sizes and high noise.ResultsThe experimental results show that the DVT model achieves a prediction accuracy of 0.96, AUROC of 0.97, specificity of 1, and sensitivity of 0.94. These results indicate that the DVT model is a highly effective tool for early thyroid cancer screening.ConclusionThe DVT model has the potential to assist clinicians in identifying potential thyroid cancer patients and reducing patient expenses. Our study provides a new approach to thyroid cancer screening using enhanced CT scans and demonstrates the effectiveness of deep learning techniques in addressing the challenges associated with CT-based models.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"24 ","pages":"15330338251323168"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960174/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Early Thyroid Screening Model Based on Transformer and Secondary Transfer Learning for Chest and Thyroid CT Images.\",\"authors\":\"Na Han, Rui Miao, Dongwei Chen, Jinrui Fan, Lin Chen, Siyao Yue, Tao Tan, Bowen Yang, Yapeng Wang\",\"doi\":\"10.1177/15330338251323168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IntroductionThyroid cancer is a common malignant tumor, and early diagnosis and timely treatment are crucial to improve patient prognosis. With the increasing use of enhanced CT scans, a new opportunity for early thyroid cancer screening has emerged. However, existing CT-based models face challenges due to limited datasets, small sample sizes, and high noise.MethodsTo address these challenges, we collected enhanced CT scan image data from 240 patients in Guangdong and Xinjiang, China, and established a CT dataset for early thyroid cancer screening. We propose a deep learning model, the DVT model, which combines transformer DNN and transfer learning techniques to integrate time series data and address small sample sizes and high noise.ResultsThe experimental results show that the DVT model achieves a prediction accuracy of 0.96, AUROC of 0.97, specificity of 1, and sensitivity of 0.94. These results indicate that the DVT model is a highly effective tool for early thyroid cancer screening.ConclusionThe DVT model has the potential to assist clinicians in identifying potential thyroid cancer patients and reducing patient expenses. Our study provides a new approach to thyroid cancer screening using enhanced CT scans and demonstrates the effectiveness of deep learning techniques in addressing the challenges associated with CT-based models.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"24 \",\"pages\":\"15330338251323168\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338251323168\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338251323168","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
An Early Thyroid Screening Model Based on Transformer and Secondary Transfer Learning for Chest and Thyroid CT Images.
IntroductionThyroid cancer is a common malignant tumor, and early diagnosis and timely treatment are crucial to improve patient prognosis. With the increasing use of enhanced CT scans, a new opportunity for early thyroid cancer screening has emerged. However, existing CT-based models face challenges due to limited datasets, small sample sizes, and high noise.MethodsTo address these challenges, we collected enhanced CT scan image data from 240 patients in Guangdong and Xinjiang, China, and established a CT dataset for early thyroid cancer screening. We propose a deep learning model, the DVT model, which combines transformer DNN and transfer learning techniques to integrate time series data and address small sample sizes and high noise.ResultsThe experimental results show that the DVT model achieves a prediction accuracy of 0.96, AUROC of 0.97, specificity of 1, and sensitivity of 0.94. These results indicate that the DVT model is a highly effective tool for early thyroid cancer screening.ConclusionThe DVT model has the potential to assist clinicians in identifying potential thyroid cancer patients and reducing patient expenses. Our study provides a new approach to thyroid cancer screening using enhanced CT scans and demonstrates the effectiveness of deep learning techniques in addressing the challenges associated with CT-based models.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.