Alex Affricano, Silvia Serra, Alice Di Bernardo, Riccardo Aigotti, Francesco Floris, Federica Dal Bello, Claudio Medana
{"title":"搅拌棒吸附萃取-高效液相色谱-串联质谱法测定饮用水中农药多残留。","authors":"Alex Affricano, Silvia Serra, Alice Di Bernardo, Riccardo Aigotti, Francesco Floris, Federica Dal Bello, Claudio Medana","doi":"10.5702/massspectrometry.A0172","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticide residues in water contamination represent a significant public and political issue due to their harmful effects on the environment, biodiversity, and human health, even at low concentrations. Pesticides are chemically heterogeneous, covering a wide range of Log<i>K</i> <sub><i>o/w</i></sub> values. Therefore, developing sensitive methods to detect a broad spectrum of hazardous chemicals in aqueous matrices is challenging. Gas and liquid chromatography/high-performance liquid chromatography-mass spectrometry (GC/HPLC-MS) are established tools but typically require pre-concentration steps. Stir bar sorptive extraction (SBSE) is a green, simple, automatable, and HPLC-compatible technique. This study presents a multi-residue method for determining 131 pesticides in mineral water using SBSE followed by HPLC-tandem MS. The selected pesticides, from various chemical classes, were evaluated in fortified ultra-pure and mineral water samples. The method demonstrated excellent sensitivity, with lower limits of quantification ranging from 20 to 50 ng/L for all analytes, enabling detection at trace levels. Selectivity was high (SEL% <20%), and reproducibility was confirmed with RSD% values below 20%. Intra- and interday precision tests revealed RSD% values from 0.23% to 19.81%. Trueness was validated with BIAS% below 20% at all concentrations. Uncertainty values were acceptable, with U% ranging from 1.44% to 49.24%. This SBSE-HPLC-tandem MS method is a robust, efficient, and reliable alternative to traditional approaches for routine monitoring of pesticide residues in drinking water, with quantification limits below regulatory requirements. It offers a suitable tool for public health applications, ensuring reliable pesticide detection in complex water matrices.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"14 1","pages":"A0172"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955823/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stir Bar Sorptive Extraction (SBSE)-HPLC-Tandem MS-Based Method for Multi-Residue Determination of Pesticides in Drinking Water.\",\"authors\":\"Alex Affricano, Silvia Serra, Alice Di Bernardo, Riccardo Aigotti, Francesco Floris, Federica Dal Bello, Claudio Medana\",\"doi\":\"10.5702/massspectrometry.A0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pesticide residues in water contamination represent a significant public and political issue due to their harmful effects on the environment, biodiversity, and human health, even at low concentrations. Pesticides are chemically heterogeneous, covering a wide range of Log<i>K</i> <sub><i>o/w</i></sub> values. Therefore, developing sensitive methods to detect a broad spectrum of hazardous chemicals in aqueous matrices is challenging. Gas and liquid chromatography/high-performance liquid chromatography-mass spectrometry (GC/HPLC-MS) are established tools but typically require pre-concentration steps. Stir bar sorptive extraction (SBSE) is a green, simple, automatable, and HPLC-compatible technique. This study presents a multi-residue method for determining 131 pesticides in mineral water using SBSE followed by HPLC-tandem MS. The selected pesticides, from various chemical classes, were evaluated in fortified ultra-pure and mineral water samples. The method demonstrated excellent sensitivity, with lower limits of quantification ranging from 20 to 50 ng/L for all analytes, enabling detection at trace levels. Selectivity was high (SEL% <20%), and reproducibility was confirmed with RSD% values below 20%. Intra- and interday precision tests revealed RSD% values from 0.23% to 19.81%. Trueness was validated with BIAS% below 20% at all concentrations. Uncertainty values were acceptable, with U% ranging from 1.44% to 49.24%. This SBSE-HPLC-tandem MS method is a robust, efficient, and reliable alternative to traditional approaches for routine monitoring of pesticide residues in drinking water, with quantification limits below regulatory requirements. It offers a suitable tool for public health applications, ensuring reliable pesticide detection in complex water matrices.</p>\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"14 1\",\"pages\":\"A0172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955823/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.A0172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Stir Bar Sorptive Extraction (SBSE)-HPLC-Tandem MS-Based Method for Multi-Residue Determination of Pesticides in Drinking Water.
Pesticide residues in water contamination represent a significant public and political issue due to their harmful effects on the environment, biodiversity, and human health, even at low concentrations. Pesticides are chemically heterogeneous, covering a wide range of LogKo/w values. Therefore, developing sensitive methods to detect a broad spectrum of hazardous chemicals in aqueous matrices is challenging. Gas and liquid chromatography/high-performance liquid chromatography-mass spectrometry (GC/HPLC-MS) are established tools but typically require pre-concentration steps. Stir bar sorptive extraction (SBSE) is a green, simple, automatable, and HPLC-compatible technique. This study presents a multi-residue method for determining 131 pesticides in mineral water using SBSE followed by HPLC-tandem MS. The selected pesticides, from various chemical classes, were evaluated in fortified ultra-pure and mineral water samples. The method demonstrated excellent sensitivity, with lower limits of quantification ranging from 20 to 50 ng/L for all analytes, enabling detection at trace levels. Selectivity was high (SEL% <20%), and reproducibility was confirmed with RSD% values below 20%. Intra- and interday precision tests revealed RSD% values from 0.23% to 19.81%. Trueness was validated with BIAS% below 20% at all concentrations. Uncertainty values were acceptable, with U% ranging from 1.44% to 49.24%. This SBSE-HPLC-tandem MS method is a robust, efficient, and reliable alternative to traditional approaches for routine monitoring of pesticide residues in drinking water, with quantification limits below regulatory requirements. It offers a suitable tool for public health applications, ensuring reliable pesticide detection in complex water matrices.