间作改变了与昆虫食草性相关的植物化学物质。

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jarrod Q Fyie, Chase A Stratton, William R Morrison, Ebony G Murrell
{"title":"间作改变了与昆虫食草性相关的植物化学物质。","authors":"Jarrod Q Fyie, Chase A Stratton, William R Morrison, Ebony G Murrell","doi":"10.1007/s10886-025-01555-9","DOIUrl":null,"url":null,"abstract":"<p><p>Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical profiles, which include phytochemical defense compounds, of crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on plant biomass and aerial volatile organic compound (VOC) emission profiles by intercropping sweetclover (Melilotus alba) and wheat (Triticum aestivum) with silflower (Silphium integrifolium) in AMF-inoculated soil. We also assessed the impact of intercropping on induced VOC profiles by conducting an in-situ, no-choice bioassay with fall armyworm (Spodoptera frugiperda). Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was introduced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. Wheat and sweetclover biomass increased when intercropped with silflower, but silflower biomass was unaffected by intercropping. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on volatile profile emissions, and possible pest resistance in agroecological systems, could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 2","pages":"46"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercropping Alters Phytochemicals Associated With Insect Herbivory.\",\"authors\":\"Jarrod Q Fyie, Chase A Stratton, William R Morrison, Ebony G Murrell\",\"doi\":\"10.1007/s10886-025-01555-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical profiles, which include phytochemical defense compounds, of crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on plant biomass and aerial volatile organic compound (VOC) emission profiles by intercropping sweetclover (Melilotus alba) and wheat (Triticum aestivum) with silflower (Silphium integrifolium) in AMF-inoculated soil. We also assessed the impact of intercropping on induced VOC profiles by conducting an in-situ, no-choice bioassay with fall armyworm (Spodoptera frugiperda). Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was introduced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. Wheat and sweetclover biomass increased when intercropped with silflower, but silflower biomass was unaffected by intercropping. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on volatile profile emissions, and possible pest resistance in agroecological systems, could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.</p>\",\"PeriodicalId\":15346,\"journal\":{\"name\":\"Journal of Chemical Ecology\",\"volume\":\"51 2\",\"pages\":\"46\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10886-025-01555-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01555-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到相邻异种植物种间化学相互作用的多种可能机制,作物的植物化学特征,包括植物化学防御化合物,可能通过与植物化学多样性的邻居间作而增强或改变。摘要在amf接种土壤中,采用银花(Silphium integrifolium)与甜三叶草(Melilotus alba)和小麦(Triticum aestivum)间作,研究不同植物化学成分间作对植物生物量和大气挥发性有机化合物(VOC)排放的影响。我们还通过对秋粘虫(Spodoptera frugiperda)进行原位无选择生物测定,评估了间作对诱导VOC谱的影响。在我们鉴定的三个植物物种的8个化合物类别中,当小麦单作和引入草食时,银花植物中的prenol脂类(萜类)上调。与银花间作时,甜三叶草中羧酸和有机氧化合物含量降低,而草食时羧酸和有机氧化合物含量增加。间作银花时,未被侵染的小麦植株比被侵染的植株释放出更多的有机氧化合物和脂肪酰基,而单作时则没有。间作银花增加了小麦和甜三叶草的生物量,但银花生物量不受间作的影响。本研究表明,间作和草食会改变三个不同分类群植物的VOC排放,从而影响其对昆虫食草性的抗性。进一步研究间作对挥发性剖面排放的影响,以及农业生态系统中可能的害虫抗性,可以帮助农民设计间作系统,优化植物的天然食草防御,从而提高农业的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intercropping Alters Phytochemicals Associated With Insect Herbivory.

Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical profiles, which include phytochemical defense compounds, of crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on plant biomass and aerial volatile organic compound (VOC) emission profiles by intercropping sweetclover (Melilotus alba) and wheat (Triticum aestivum) with silflower (Silphium integrifolium) in AMF-inoculated soil. We also assessed the impact of intercropping on induced VOC profiles by conducting an in-situ, no-choice bioassay with fall armyworm (Spodoptera frugiperda). Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was introduced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. Wheat and sweetclover biomass increased when intercropped with silflower, but silflower biomass was unaffected by intercropping. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on volatile profile emissions, and possible pest resistance in agroecological systems, could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信