Dingge Ying, Jamie Sui Lam Kwok, Annie Tsz Wai Chu, Wei Ma, Helen Ying Fung Tam, Dicky Or, Shirley Pik Ying Hue, Qing Li, Christopher Kai Shun Leung, Brian Hon Yin Chung
{"title":"加速色素性视网膜炎的基因诊断:香港基因组计划半自动化定制队列分析工作流程的实施。","authors":"Dingge Ying, Jamie Sui Lam Kwok, Annie Tsz Wai Chu, Wei Ma, Helen Ying Fung Tam, Dicky Or, Shirley Pik Ying Hue, Qing Li, Christopher Kai Shun Leung, Brian Hon Yin Chung","doi":"10.1007/s00439-025-02737-x","DOIUrl":null,"url":null,"abstract":"<p><p>The study aims to enhance the efficiency of the genetic variant curation process at the Hong Kong Genome Institute by developing a Semi-Automated Bespoke Cohort Analysis Workflow (S-BCAW) for patients with, or suspected to have, retinitis pigmentosa (RP) in the Hong Kong Genome Project (HKGP), leveraging advances in next-generation sequencing (NGS). A comparative analysis involving 79 RP patients was conducted using both the conventional manual workflow and the novel S-BCAW, which integrates initial filtering and variant classification based on ACMG guidelines, followed by detailed manual review. The diagnostic yields from both methods were identical, but the bespoke workflow reduced analysis time by approximately 60% (1.5 h/sample). This efficiency increase resulted from automated application of ACMG rules and systematic aggregation of supportive data, including disease-specific information. The study reports 25 positive cases with a diagnostic yield of 32%, including three novel variants. The S-BCAW significantly improves efficiency, helping to end the diagnostic odyssey for patients in the HKGP. This approach facilitates rapid assessment of variant pathogenicity, enhancing the feasibility and timeliness of NGS technology for clinical applications, especially in urgent scenarios.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating genetic diagnostics in retinitis pigmentosa: implementation of a semi-automated bespoke cohort analysis workflow for Hong Kong Genome Project.\",\"authors\":\"Dingge Ying, Jamie Sui Lam Kwok, Annie Tsz Wai Chu, Wei Ma, Helen Ying Fung Tam, Dicky Or, Shirley Pik Ying Hue, Qing Li, Christopher Kai Shun Leung, Brian Hon Yin Chung\",\"doi\":\"10.1007/s00439-025-02737-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aims to enhance the efficiency of the genetic variant curation process at the Hong Kong Genome Institute by developing a Semi-Automated Bespoke Cohort Analysis Workflow (S-BCAW) for patients with, or suspected to have, retinitis pigmentosa (RP) in the Hong Kong Genome Project (HKGP), leveraging advances in next-generation sequencing (NGS). A comparative analysis involving 79 RP patients was conducted using both the conventional manual workflow and the novel S-BCAW, which integrates initial filtering and variant classification based on ACMG guidelines, followed by detailed manual review. The diagnostic yields from both methods were identical, but the bespoke workflow reduced analysis time by approximately 60% (1.5 h/sample). This efficiency increase resulted from automated application of ACMG rules and systematic aggregation of supportive data, including disease-specific information. The study reports 25 positive cases with a diagnostic yield of 32%, including three novel variants. The S-BCAW significantly improves efficiency, helping to end the diagnostic odyssey for patients in the HKGP. This approach facilitates rapid assessment of variant pathogenicity, enhancing the feasibility and timeliness of NGS technology for clinical applications, especially in urgent scenarios.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-025-02737-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-025-02737-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Accelerating genetic diagnostics in retinitis pigmentosa: implementation of a semi-automated bespoke cohort analysis workflow for Hong Kong Genome Project.
The study aims to enhance the efficiency of the genetic variant curation process at the Hong Kong Genome Institute by developing a Semi-Automated Bespoke Cohort Analysis Workflow (S-BCAW) for patients with, or suspected to have, retinitis pigmentosa (RP) in the Hong Kong Genome Project (HKGP), leveraging advances in next-generation sequencing (NGS). A comparative analysis involving 79 RP patients was conducted using both the conventional manual workflow and the novel S-BCAW, which integrates initial filtering and variant classification based on ACMG guidelines, followed by detailed manual review. The diagnostic yields from both methods were identical, but the bespoke workflow reduced analysis time by approximately 60% (1.5 h/sample). This efficiency increase resulted from automated application of ACMG rules and systematic aggregation of supportive data, including disease-specific information. The study reports 25 positive cases with a diagnostic yield of 32%, including three novel variants. The S-BCAW significantly improves efficiency, helping to end the diagnostic odyssey for patients in the HKGP. This approach facilitates rapid assessment of variant pathogenicity, enhancing the feasibility and timeliness of NGS technology for clinical applications, especially in urgent scenarios.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.