{"title":"基因组和骨骼蛋白质组分析揭示了八珊瑚钙化的分子基础。","authors":"Yanshuo Liang, Kuidong Xu, Junyuan Li, Jingyuan Shi, Jiehong Wei, Xiaoyu Zheng, Wanying He, Xin Zhang","doi":"10.1093/gigascience/giaf031","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959691/pdf/","citationCount":"0","resultStr":"{\"title\":\"The molecular basis of octocoral calcification revealed by genome and skeletal proteome analyses.\",\"authors\":\"Yanshuo Liang, Kuidong Xu, Junyuan Li, Jingyuan Shi, Jiehong Wei, Xiaoyu Zheng, Wanying He, Xin Zhang\",\"doi\":\"10.1093/gigascience/giaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf031\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf031","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The molecular basis of octocoral calcification revealed by genome and skeletal proteome analyses.
The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.