基因组任务的Kolmogorov-Arnold网络。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Oleksandr Cherednichenko, Maria Poptsova
{"title":"基因组任务的Kolmogorov-Arnold网络。","authors":"Oleksandr Cherednichenko, Maria Poptsova","doi":"10.1093/bib/bbaf129","DOIUrl":null,"url":null,"abstract":"<p><p>Kolmogorov-Arnold networks (KANs) emerged as a promising alternative for multilayer perceptrons (MLPs) in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as a replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different state-of-the-art deep learning architectures currently used in genomics requires further research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957273/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kolmogorov-Arnold networks for genomic tasks.\",\"authors\":\"Oleksandr Cherednichenko, Maria Poptsova\",\"doi\":\"10.1093/bib/bbaf129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kolmogorov-Arnold networks (KANs) emerged as a promising alternative for multilayer perceptrons (MLPs) in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as a replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different state-of-the-art deep learning architectures currently used in genomics requires further research.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf129\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf129","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Kolmogorov-Arnold网络(KANs)成为多层感知器(mlp)在密集全连接网络中的一个有前途的替代方案。在计算机视觉和自然语言处理领域,人们已经多次尝试将KANs集成到各种深度学习架构中。将KANs整合到基因组任务的深度学习模型尚未探索。在这里,我们测试了线性KANs (LKANs)和卷积KANs (CKANs)作为MLP在基线深度学习架构中的替代品,用于基因组序列的分类和生成。我们使用了三个基因组基准数据集:基因组基准、基因组理解评估和Flipon基准。我们证明lkan在几乎所有数据集上都优于基线和CKANs。CKANs可以获得类似的结果,但在大量参数上缩放时会遇到困难。烧蚀分析表明,KAN层数与模型性能相关。总体而言,线性KANs在提高具有相对较少参数的深度学习模型的性能方面显示出有希望的结果。在基因组学中使用的不同的最先进的深度学习架构中释放KAN的潜力需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kolmogorov-Arnold networks for genomic tasks.

Kolmogorov-Arnold networks (KANs) emerged as a promising alternative for multilayer perceptrons (MLPs) in dense fully connected networks. Multiple attempts have been made to integrate KANs into various deep learning architectures in the domains of computer vision and natural language processing. Integrating KANs into deep learning models for genomic tasks has not been explored. Here, we tested linear KANs (LKANs) and convolutional KANs (CKANs) as a replacement for MLP in baseline deep learning architectures for classification and generation of genomic sequences. We used three genomic benchmark datasets: Genomic Benchmarks, Genome Understanding Evaluation, and Flipon Benchmark. We demonstrated that LKANs outperformed both baseline and CKANs on almost all datasets. CKANs can achieve comparable results but struggle with scaling over large number of parameters. Ablation analysis demonstrated that the number of KAN layers correlates with the model performance. Overall, linear KANs show promising results in improving the performance of deep learning models with relatively small number of parameters. Unleashing KAN potential in different state-of-the-art deep learning architectures currently used in genomics requires further research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信