Abdur Razzak, Otun Saha, Khandokar Fahmida Sultana, Mohammad Ruhul Amin, Abdullah Bin Zahid, Afroza Sultana, Uditi Paul Bristi, Sultana Rajia, Nikkon Sarker, Md Mizanur Rahaman, Newaz Mohammed Bahadur, Foysal Hossen
{"title":"一种新型mRNA疫苗的研制:一种硅免疫信息学方法对抗引起广泛志贺氏菌病的致病性。","authors":"Abdur Razzak, Otun Saha, Khandokar Fahmida Sultana, Mohammad Ruhul Amin, Abdullah Bin Zahid, Afroza Sultana, Uditi Paul Bristi, Sultana Rajia, Nikkon Sarker, Md Mizanur Rahaman, Newaz Mohammed Bahadur, Foysal Hossen","doi":"10.1177/11779322251328302","DOIUrl":null,"url":null,"abstract":"<p><p>Shigellosis remains a major global health concern, particularly in regions with poor sanitation and limited access to clean water. This study used immunoinformatics and reverse vaccinology to design a potential mRNA vaccine targeting <i>Shigella</i> pathotypes out of 4071 proteins from <i>Shigella sonnei</i> str. Ss046, 4 key antigenic candidates were identified: putative outer membrane protein (Q3YZL0), PapC-like porin protein (Q3YZM5), putative fimbrial-like protein (Q3Z3I2), and lipopolysaccharide (LPS)-assembly protein LptD (Q3Z5V5), ensuring broad pathotype coverage. A multitope vaccine was designed incorporating cytotoxic T lymphocyte, helper T lymphocyte, and B-cell epitopes, linked with suitable linkers and adjuvants to enhance immunogenicity. Computational analyses predicted vaccine's favorable antigenicity, solubility, and stability, while molecular docking and dynamic simulations demonstrated strong binding affinity and stability with Toll-like receptor 4 (TLR-4), indicating potential for robust immune activation. Immune simulations predicted strong humoral and cellular immune responses, characterized by significant cytokine production and long-term immune memory. Structural evaluations of the complex, including radius of gyration, root mean square deviation, root mean square fluctuation, and solvent accessibility, confirmed the vaccine's structural integrity, and stability under physiological conditions. This research contributes to the ongoing effort to alleviate the global burden of <i>Shigella</i> infections, providing a foundation for future wet laboratory investigations aimed at vaccine development.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"19 ","pages":"11779322251328302"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951904/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Novel mRNA Vaccine Against <i>Shigella</i> Pathotypes Causing Widespread Shigellosis Endemic: An In-Silico Immunoinformatic Approach.\",\"authors\":\"Abdur Razzak, Otun Saha, Khandokar Fahmida Sultana, Mohammad Ruhul Amin, Abdullah Bin Zahid, Afroza Sultana, Uditi Paul Bristi, Sultana Rajia, Nikkon Sarker, Md Mizanur Rahaman, Newaz Mohammed Bahadur, Foysal Hossen\",\"doi\":\"10.1177/11779322251328302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shigellosis remains a major global health concern, particularly in regions with poor sanitation and limited access to clean water. This study used immunoinformatics and reverse vaccinology to design a potential mRNA vaccine targeting <i>Shigella</i> pathotypes out of 4071 proteins from <i>Shigella sonnei</i> str. Ss046, 4 key antigenic candidates were identified: putative outer membrane protein (Q3YZL0), PapC-like porin protein (Q3YZM5), putative fimbrial-like protein (Q3Z3I2), and lipopolysaccharide (LPS)-assembly protein LptD (Q3Z5V5), ensuring broad pathotype coverage. A multitope vaccine was designed incorporating cytotoxic T lymphocyte, helper T lymphocyte, and B-cell epitopes, linked with suitable linkers and adjuvants to enhance immunogenicity. Computational analyses predicted vaccine's favorable antigenicity, solubility, and stability, while molecular docking and dynamic simulations demonstrated strong binding affinity and stability with Toll-like receptor 4 (TLR-4), indicating potential for robust immune activation. Immune simulations predicted strong humoral and cellular immune responses, characterized by significant cytokine production and long-term immune memory. Structural evaluations of the complex, including radius of gyration, root mean square deviation, root mean square fluctuation, and solvent accessibility, confirmed the vaccine's structural integrity, and stability under physiological conditions. This research contributes to the ongoing effort to alleviate the global burden of <i>Shigella</i> infections, providing a foundation for future wet laboratory investigations aimed at vaccine development.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":\"19 \",\"pages\":\"11779322251328302\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951904/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322251328302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322251328302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development of a Novel mRNA Vaccine Against Shigella Pathotypes Causing Widespread Shigellosis Endemic: An In-Silico Immunoinformatic Approach.
Shigellosis remains a major global health concern, particularly in regions with poor sanitation and limited access to clean water. This study used immunoinformatics and reverse vaccinology to design a potential mRNA vaccine targeting Shigella pathotypes out of 4071 proteins from Shigella sonnei str. Ss046, 4 key antigenic candidates were identified: putative outer membrane protein (Q3YZL0), PapC-like porin protein (Q3YZM5), putative fimbrial-like protein (Q3Z3I2), and lipopolysaccharide (LPS)-assembly protein LptD (Q3Z5V5), ensuring broad pathotype coverage. A multitope vaccine was designed incorporating cytotoxic T lymphocyte, helper T lymphocyte, and B-cell epitopes, linked with suitable linkers and adjuvants to enhance immunogenicity. Computational analyses predicted vaccine's favorable antigenicity, solubility, and stability, while molecular docking and dynamic simulations demonstrated strong binding affinity and stability with Toll-like receptor 4 (TLR-4), indicating potential for robust immune activation. Immune simulations predicted strong humoral and cellular immune responses, characterized by significant cytokine production and long-term immune memory. Structural evaluations of the complex, including radius of gyration, root mean square deviation, root mean square fluctuation, and solvent accessibility, confirmed the vaccine's structural integrity, and stability under physiological conditions. This research contributes to the ongoing effort to alleviate the global burden of Shigella infections, providing a foundation for future wet laboratory investigations aimed at vaccine development.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.