{"title":"喹硫平通过ERK1/2信号逆转酒精暴露妊娠期糖尿病后代小鼠的行为和髓鞘形成","authors":"Dong Huang, Maolin Li, Zhifei Qiao, Hongli Zhou, Zuo Zhang, Jiyin Zhou","doi":"10.1248/bpb.b24-00642","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a glucose metabolism abnormality that first emerges during pregnancy and may negatively affect the behavioral and neurodevelopmental outcomes of offspring. Quetiapine (QUE) has been shown to promote differentiation of oligodendrocyte precursor cells (OPCs) and protect oligodendrocytes and myelination. To explore the effects of QUE on improving the expression of conditioned place preference (CPP) and myelination in the infralimbic cortex (IL) of the medial prefrontal cortex in alcohol-exposed GDM offspring mice, we evaluated CPP expression in 5-week-old alcohol-exposed GDM offspring and treated them with QUE and the extracellular-regulated protein kinase (ERK) inhibitor U0126. Immunohistochemical staining compared the numbers of mature oligodendrocytes, OPCs, and myelin expression levels. Immunofluorescence staining was employed to examine OPC differentiation and the activation of the ERK1/2 signaling pathway. In GDM offspring, CPP expression increased considerably following alcohol exposure, whereas early treatment with QUE or U0126 significantly decreased CPP expression. Meanwhile, alcohol exposure resulted in substantial activation of the ERK1/2 signaling pathway within OPCs in the IL region, as well as a substantial reduction in OPC differentiation, mature oligodendrocyte count, and myelin expression. QUE or U0126 inhibited the activation of the ERK1/2 signaling pathway within OPCs in the IL region of alcohol-exposed GDM offspring and markedly restored OPC differentiation, mature oligodendrocyte numbers, and myelin expression. Collectively, QUE enhanced the differentiation of OPCs in the IL region of GDM offspring after alcohol exposure by regulating the overactivation of the ERK1/2 signaling pathway, thus partially reversing myelination loss and ultimately improving CPP expression.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 3","pages":"323-335"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quetiapine Reverses the Behavior and Myelination in Alcohol-Exposed Gestational Diabetes Mellitus Offspring Mice via ERK1/2 Signaling.\",\"authors\":\"Dong Huang, Maolin Li, Zhifei Qiao, Hongli Zhou, Zuo Zhang, Jiyin Zhou\",\"doi\":\"10.1248/bpb.b24-00642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gestational diabetes mellitus (GDM) is a glucose metabolism abnormality that first emerges during pregnancy and may negatively affect the behavioral and neurodevelopmental outcomes of offspring. Quetiapine (QUE) has been shown to promote differentiation of oligodendrocyte precursor cells (OPCs) and protect oligodendrocytes and myelination. To explore the effects of QUE on improving the expression of conditioned place preference (CPP) and myelination in the infralimbic cortex (IL) of the medial prefrontal cortex in alcohol-exposed GDM offspring mice, we evaluated CPP expression in 5-week-old alcohol-exposed GDM offspring and treated them with QUE and the extracellular-regulated protein kinase (ERK) inhibitor U0126. Immunohistochemical staining compared the numbers of mature oligodendrocytes, OPCs, and myelin expression levels. Immunofluorescence staining was employed to examine OPC differentiation and the activation of the ERK1/2 signaling pathway. In GDM offspring, CPP expression increased considerably following alcohol exposure, whereas early treatment with QUE or U0126 significantly decreased CPP expression. Meanwhile, alcohol exposure resulted in substantial activation of the ERK1/2 signaling pathway within OPCs in the IL region, as well as a substantial reduction in OPC differentiation, mature oligodendrocyte count, and myelin expression. QUE or U0126 inhibited the activation of the ERK1/2 signaling pathway within OPCs in the IL region of alcohol-exposed GDM offspring and markedly restored OPC differentiation, mature oligodendrocyte numbers, and myelin expression. Collectively, QUE enhanced the differentiation of OPCs in the IL region of GDM offspring after alcohol exposure by regulating the overactivation of the ERK1/2 signaling pathway, thus partially reversing myelination loss and ultimately improving CPP expression.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":\"48 3\",\"pages\":\"323-335\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00642\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00642","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Quetiapine Reverses the Behavior and Myelination in Alcohol-Exposed Gestational Diabetes Mellitus Offspring Mice via ERK1/2 Signaling.
Gestational diabetes mellitus (GDM) is a glucose metabolism abnormality that first emerges during pregnancy and may negatively affect the behavioral and neurodevelopmental outcomes of offspring. Quetiapine (QUE) has been shown to promote differentiation of oligodendrocyte precursor cells (OPCs) and protect oligodendrocytes and myelination. To explore the effects of QUE on improving the expression of conditioned place preference (CPP) and myelination in the infralimbic cortex (IL) of the medial prefrontal cortex in alcohol-exposed GDM offspring mice, we evaluated CPP expression in 5-week-old alcohol-exposed GDM offspring and treated them with QUE and the extracellular-regulated protein kinase (ERK) inhibitor U0126. Immunohistochemical staining compared the numbers of mature oligodendrocytes, OPCs, and myelin expression levels. Immunofluorescence staining was employed to examine OPC differentiation and the activation of the ERK1/2 signaling pathway. In GDM offspring, CPP expression increased considerably following alcohol exposure, whereas early treatment with QUE or U0126 significantly decreased CPP expression. Meanwhile, alcohol exposure resulted in substantial activation of the ERK1/2 signaling pathway within OPCs in the IL region, as well as a substantial reduction in OPC differentiation, mature oligodendrocyte count, and myelin expression. QUE or U0126 inhibited the activation of the ERK1/2 signaling pathway within OPCs in the IL region of alcohol-exposed GDM offspring and markedly restored OPC differentiation, mature oligodendrocyte numbers, and myelin expression. Collectively, QUE enhanced the differentiation of OPCs in the IL region of GDM offspring after alcohol exposure by regulating the overactivation of the ERK1/2 signaling pathway, thus partially reversing myelination loss and ultimately improving CPP expression.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.