通过人工智能对RNA和DNA结构预测的关键评估:模仿游戏。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Christina Bergonzo, Alexander Grishaev
{"title":"通过人工智能对RNA和DNA结构预测的关键评估:模仿游戏。","authors":"Christina Bergonzo, Alexander Grishaev","doi":"10.1021/acs.jcim.5c00245","DOIUrl":null,"url":null,"abstract":"<p><p>Computational predictions of biomolecular structure via artificial intelligence (AI) based approaches, as exemplified by AlphaFold software, have the potential to model of all life's biomolecules. We performed oligonucleotide structure prediction and gauged the accuracy of the AI-generated models via their agreement with experimental solution-state observables. We find parts of these models in good agreement with experimental data, and others falling short of the ground truth. The latter include internal or capping loops, noncanonical base pairings, and regions involving conformational flexibility, all essential for RNA folding, interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to mimic the training data set rather than reproduce the underlying reality.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Assessment of RNA and DNA Structure Predictions via Artificial Intelligence: The Imitation Game.\",\"authors\":\"Christina Bergonzo, Alexander Grishaev\",\"doi\":\"10.1021/acs.jcim.5c00245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational predictions of biomolecular structure via artificial intelligence (AI) based approaches, as exemplified by AlphaFold software, have the potential to model of all life's biomolecules. We performed oligonucleotide structure prediction and gauged the accuracy of the AI-generated models via their agreement with experimental solution-state observables. We find parts of these models in good agreement with experimental data, and others falling short of the ground truth. The latter include internal or capping loops, noncanonical base pairings, and regions involving conformational flexibility, all essential for RNA folding, interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to mimic the training data set rather than reproduce the underlying reality.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00245\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00245","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

以AlphaFold软件为例,通过基于人工智能(AI)的方法对生物分子结构进行计算预测,有可能模拟所有生命的生物分子。我们进行了寡核苷酸结构预测,并通过人工智能生成的模型与实验溶液状态观测值的一致性来衡量其准确性。我们发现这些模型的一部分与实验数据非常吻合,而另一部分则与事实不符。后者包括内部或旋盖环、非规范碱基配对和涉及构象灵活性的区域,这些都是RNA折叠、相互作用和功能所必需的。我们估计预测核苷酸键向量方向的均方根误差在7°到30°之间,对于单个标准配对螺旋茎的简单结构具有更高的精度。这些混合的结果突出了人工智能寡核苷酸模型预测的实验验证的必要性,以及它们目前的趋势是模仿训练数据集,而不是再现潜在的现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Assessment of RNA and DNA Structure Predictions via Artificial Intelligence: The Imitation Game.

Computational predictions of biomolecular structure via artificial intelligence (AI) based approaches, as exemplified by AlphaFold software, have the potential to model of all life's biomolecules. We performed oligonucleotide structure prediction and gauged the accuracy of the AI-generated models via their agreement with experimental solution-state observables. We find parts of these models in good agreement with experimental data, and others falling short of the ground truth. The latter include internal or capping loops, noncanonical base pairings, and regions involving conformational flexibility, all essential for RNA folding, interactions, and function. We estimate root-mean-square (r.m.s.) errors in predicted nucleotide bond vector orientations ranging between 7° and 30°, with higher accuracies for simpler architectures of individual canonically paired helical stems. These mixed results highlight the necessity of experimental validation of AI-based oligonucleotide model predictions and their current tendency to mimic the training data set rather than reproduce the underlying reality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信