基于MLP的多变量桥式起重机自适应安全制动与距离预测

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Tenglong Zhang, Guoliang Liu, Huili Chen, Guohui Tian, Qingqiang Guo
{"title":"基于MLP的多变量桥式起重机自适应安全制动与距离预测","authors":"Tenglong Zhang,&nbsp;Guoliang Liu,&nbsp;Huili Chen,&nbsp;Guohui Tian,&nbsp;Qingqiang Guo","doi":"10.1049/csy2.70007","DOIUrl":null,"url":null,"abstract":"<p>The emergency braking and braking distance prediction of an overhead crane pose challenging issues in its safe operation. This paper employs a multilayer perceptron (MLP) to implement an adaptive safe distance prediction functionality for an overhead crane with multiple variations. First, a discrete model of an overhead crane is constructed, and a model predictive control (MPC) model with angle constraints is applied for safe braking. Second, we analysed and selected the input variations of the safe distance prediction model. Subsequently, we permuted the inputs to the MLP and analysed the effect of each input on the accuracy of the MLP in predicting safety distances separately. We constructed a training dataset, and a test dataset and we optimised the safe distance prediction model through the training dataset. Finally, we conducted a comparative analysis between the MLP and nlinfit algorithms, highlighting the superiority of MLP-based adaptive safety distance prediction for bridge cranes. Experiments confirm the method's ability to ensure minimal swing angle during the entire braking process to achieve safe braking. The results underscore the practical utility and novelty of the proposed algorithm.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70007","citationCount":"0","resultStr":"{\"title\":\"Adaptive Safe Braking and Distance Prediction for Overhead Cranes With Multivariation Using MLP\",\"authors\":\"Tenglong Zhang,&nbsp;Guoliang Liu,&nbsp;Huili Chen,&nbsp;Guohui Tian,&nbsp;Qingqiang Guo\",\"doi\":\"10.1049/csy2.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emergency braking and braking distance prediction of an overhead crane pose challenging issues in its safe operation. This paper employs a multilayer perceptron (MLP) to implement an adaptive safe distance prediction functionality for an overhead crane with multiple variations. First, a discrete model of an overhead crane is constructed, and a model predictive control (MPC) model with angle constraints is applied for safe braking. Second, we analysed and selected the input variations of the safe distance prediction model. Subsequently, we permuted the inputs to the MLP and analysed the effect of each input on the accuracy of the MLP in predicting safety distances separately. We constructed a training dataset, and a test dataset and we optimised the safe distance prediction model through the training dataset. Finally, we conducted a comparative analysis between the MLP and nlinfit algorithms, highlighting the superiority of MLP-based adaptive safety distance prediction for bridge cranes. Experiments confirm the method's ability to ensure minimal swing angle during the entire braking process to achieve safe braking. The results underscore the practical utility and novelty of the proposed algorithm.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

桥式起重机的紧急制动和制动距离预测是桥式起重机安全运行的重要课题。本文采用多层感知器(MLP)实现了多变量桥式起重机的自适应安全距离预测功能。首先,建立了桥式起重机的离散模型,并将其应用于具有角度约束的模型预测控制(MPC)模型进行安全制动。其次,对安全距离预测模型的输入变量进行了分析和选择。随后,我们对MLP的输入进行了排列,并分别分析了每个输入对MLP预测安全距离准确性的影响。我们构建了训练数据集和测试数据集,并通过训练数据集对安全距离预测模型进行了优化。最后,对MLP算法和nlinfit算法进行了对比分析,突出了基于MLP的桥式起重机自适应安全距离预测的优越性。实验验证了该方法在整个制动过程中能够保证最小的摆角,从而实现安全制动。结果表明了该算法的实用性和新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive Safe Braking and Distance Prediction for Overhead Cranes With Multivariation Using MLP

Adaptive Safe Braking and Distance Prediction for Overhead Cranes With Multivariation Using MLP

The emergency braking and braking distance prediction of an overhead crane pose challenging issues in its safe operation. This paper employs a multilayer perceptron (MLP) to implement an adaptive safe distance prediction functionality for an overhead crane with multiple variations. First, a discrete model of an overhead crane is constructed, and a model predictive control (MPC) model with angle constraints is applied for safe braking. Second, we analysed and selected the input variations of the safe distance prediction model. Subsequently, we permuted the inputs to the MLP and analysed the effect of each input on the accuracy of the MLP in predicting safety distances separately. We constructed a training dataset, and a test dataset and we optimised the safe distance prediction model through the training dataset. Finally, we conducted a comparative analysis between the MLP and nlinfit algorithms, highlighting the superiority of MLP-based adaptive safety distance prediction for bridge cranes. Experiments confirm the method's ability to ensure minimal swing angle during the entire braking process to achieve safe braking. The results underscore the practical utility and novelty of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信