基于基础模型的伪装目标检测

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zefeng Chen, Zhijiang Li, Yunqi Xue, Li Zhang
{"title":"基于基础模型的伪装目标检测","authors":"Zefeng Chen,&nbsp;Zhijiang Li,&nbsp;Yunqi Xue,&nbsp;Li Zhang","doi":"10.1049/cvi2.70009","DOIUrl":null,"url":null,"abstract":"<p>Camouflaged object detection (COD) aims to identify and segment objects that closely resemble and are seamlessly integrated into their surrounding environments, making it a challenging task in computer vision. COD is constrained by the limited availability of training data and annotated samples, and most carefully designed COD models exhibit diminished performance under low-data conditions. In recent years, there has been increasing interest in leveraging foundation models, which have demonstrated robust general capabilities and superior generalisation performance, to address COD challenges. This work proposes a knowledge-guided domain adaptation (KGDA) approach to tackle the data scarcity problem in COD. The method utilises the knowledge descriptions generated by multimodal large language models (MLLMs) for camouflaged images, aiming to enhance the model's comprehension of semantic objects and camouflaged scenes through highly abstract and generalised knowledge representations. To resolve ambiguities and errors in the generated text descriptions, a multi-level knowledge aggregation (MLKG) module is devised. This module consolidates consistent semantic knowledge and forms multi-level semantic knowledge features. To incorporate semantic knowledge into the visual foundation model, the authors introduce a knowledge-guided semantic enhancement adaptor (KSEA) that integrates the semantic knowledge of camouflaged objects while preserving the original knowledge of the foundation model. Extensive experiments demonstrate that our method surpasses 19 state-of-the-art approaches and exhibits strong generalisation capabilities even with limited annotated data.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70009","citationCount":"0","resultStr":"{\"title\":\"Foundation Model Based Camouflaged Object Detection\",\"authors\":\"Zefeng Chen,&nbsp;Zhijiang Li,&nbsp;Yunqi Xue,&nbsp;Li Zhang\",\"doi\":\"10.1049/cvi2.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Camouflaged object detection (COD) aims to identify and segment objects that closely resemble and are seamlessly integrated into their surrounding environments, making it a challenging task in computer vision. COD is constrained by the limited availability of training data and annotated samples, and most carefully designed COD models exhibit diminished performance under low-data conditions. In recent years, there has been increasing interest in leveraging foundation models, which have demonstrated robust general capabilities and superior generalisation performance, to address COD challenges. This work proposes a knowledge-guided domain adaptation (KGDA) approach to tackle the data scarcity problem in COD. The method utilises the knowledge descriptions generated by multimodal large language models (MLLMs) for camouflaged images, aiming to enhance the model's comprehension of semantic objects and camouflaged scenes through highly abstract and generalised knowledge representations. To resolve ambiguities and errors in the generated text descriptions, a multi-level knowledge aggregation (MLKG) module is devised. This module consolidates consistent semantic knowledge and forms multi-level semantic knowledge features. To incorporate semantic knowledge into the visual foundation model, the authors introduce a knowledge-guided semantic enhancement adaptor (KSEA) that integrates the semantic knowledge of camouflaged objects while preserving the original knowledge of the foundation model. Extensive experiments demonstrate that our method surpasses 19 state-of-the-art approaches and exhibits strong generalisation capabilities even with limited annotated data.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70009\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

伪装对象检测(COD)旨在识别和分割与周围环境紧密相似并无缝集成的对象,这使其成为计算机视觉中的一项具有挑战性的任务。COD受到训练数据和带注释样本的有限可用性的限制,大多数精心设计的COD模型在低数据条件下表现出较低的性能。近年来,人们对利用基础模型越来越感兴趣,这些模型已经证明了强大的通用能力和优越的泛化性能,以解决COD挑战。本文提出了一种知识引导的领域自适应(KGDA)方法来解决COD中的数据稀缺问题。该方法利用多模态大语言模型(mllm)对伪装图像生成的知识描述,旨在通过高度抽象和泛化的知识表示,增强模型对语义对象和伪装场景的理解。为了解决生成的文本描述中的歧义和错误,设计了多级知识聚合模块。该模块巩固了一致的语义知识,形成了多层次的语义知识特征。为了将语义知识整合到可视化基础模型中,作者引入了一种知识引导的语义增强适配器(KSEA),该适配器在保留基础模型原有知识的同时集成了伪装对象的语义知识。大量的实验表明,我们的方法超过了19种最先进的方法,即使在有限的注释数据下也表现出强大的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Foundation Model Based Camouflaged Object Detection

Foundation Model Based Camouflaged Object Detection

Camouflaged object detection (COD) aims to identify and segment objects that closely resemble and are seamlessly integrated into their surrounding environments, making it a challenging task in computer vision. COD is constrained by the limited availability of training data and annotated samples, and most carefully designed COD models exhibit diminished performance under low-data conditions. In recent years, there has been increasing interest in leveraging foundation models, which have demonstrated robust general capabilities and superior generalisation performance, to address COD challenges. This work proposes a knowledge-guided domain adaptation (KGDA) approach to tackle the data scarcity problem in COD. The method utilises the knowledge descriptions generated by multimodal large language models (MLLMs) for camouflaged images, aiming to enhance the model's comprehension of semantic objects and camouflaged scenes through highly abstract and generalised knowledge representations. To resolve ambiguities and errors in the generated text descriptions, a multi-level knowledge aggregation (MLKG) module is devised. This module consolidates consistent semantic knowledge and forms multi-level semantic knowledge features. To incorporate semantic knowledge into the visual foundation model, the authors introduce a knowledge-guided semantic enhancement adaptor (KSEA) that integrates the semantic knowledge of camouflaged objects while preserving the original knowledge of the foundation model. Extensive experiments demonstrate that our method surpasses 19 state-of-the-art approaches and exhibits strong generalisation capabilities even with limited annotated data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信