基于生成对抗网络的单像素图像超分辨率

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
D. V. Babukhin, A. A. Reutov, D. V. Sych
{"title":"基于生成对抗网络的单像素图像超分辨率","authors":"D. V. Babukhin,&nbsp;A. A. Reutov,&nbsp;D. V. Sych","doi":"10.3103/S1068335624601729","DOIUrl":null,"url":null,"abstract":"<p>Imaging of physical objects using single-pixel cameras is an actively developing area at the intersection of optics and computational mathematics. Image restoration algorithms used in single-pixel cameras usually provide low resolution due to practical limitations on realistic computing resources. In this paper, we demonstrate an increase in the resolution of images obtained in single-pixel imaging using a generative adversarial neural network and discuss its application using the example of chest X-ray images from the MedMNIST dataset.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"52 1","pages":"14 - 21"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Superresolution in Single-Pixel Imaging with Generative Adversarial Networks\",\"authors\":\"D. V. Babukhin,&nbsp;A. A. Reutov,&nbsp;D. V. Sych\",\"doi\":\"10.3103/S1068335624601729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Imaging of physical objects using single-pixel cameras is an actively developing area at the intersection of optics and computational mathematics. Image restoration algorithms used in single-pixel cameras usually provide low resolution due to practical limitations on realistic computing resources. In this paper, we demonstrate an increase in the resolution of images obtained in single-pixel imaging using a generative adversarial neural network and discuss its application using the example of chest X-ray images from the MedMNIST dataset.</p>\",\"PeriodicalId\":503,\"journal\":{\"name\":\"Bulletin of the Lebedev Physics Institute\",\"volume\":\"52 1\",\"pages\":\"14 - 21\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Lebedev Physics Institute\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068335624601729\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335624601729","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用单像素相机对物理物体进行成像是光学与计算数学交叉领域的一个积极发展的领域。由于实际计算资源的限制,单像素相机中使用的图像恢复算法通常提供较低的分辨率。在本文中,我们展示了使用生成对抗神经网络在单像素成像中获得的图像分辨率的提高,并使用MedMNIST数据集的胸部x射线图像示例讨论了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Image Superresolution in Single-Pixel Imaging with Generative Adversarial Networks

Image Superresolution in Single-Pixel Imaging with Generative Adversarial Networks

Imaging of physical objects using single-pixel cameras is an actively developing area at the intersection of optics and computational mathematics. Image restoration algorithms used in single-pixel cameras usually provide low resolution due to practical limitations on realistic computing resources. In this paper, we demonstrate an increase in the resolution of images obtained in single-pixel imaging using a generative adversarial neural network and discuss its application using the example of chest X-ray images from the MedMNIST dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Lebedev Physics Institute
Bulletin of the Lebedev Physics Institute PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
25.00%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信