Yanli Wu, Junyin Wang, Hui Li, Xiaoxue Ai, Xiao Li
{"title":"无锚三维目标检测的多模态特征自适应融合","authors":"Yanli Wu, Junyin Wang, Hui Li, Xiaoxue Ai, Xiao Li","doi":"10.1007/s10489-025-06454-w","DOIUrl":null,"url":null,"abstract":"<div><p>LiDAR and camera are two key sensors that provide mutually complementary information for 3D detection in autonomous driving. Existing multimodal detection methods often decorate the original point cloud data with camera features to complete the detection, ignoring the mutual fusion between camera features and point cloud features. In addition, ground points scanned by LiDAR in natural scenes usually interfere significantly with the detection results, and existing methods fail to address this problem effectively. We present a simple yet efficient anchor-free 3D object detection, which can better adapt to complex scenes through the adaptive fusion of multimodal features. First, we propose a fully convolutional bird’s-eye view reconstruction module to sense ground map geometry changes, for improving the interference of ground points on detection results. Second, a multimodal feature adaptive fusion module with local awareness is designed to improve the mutual fusion of camera and point cloud features. Finally, we introduce a scale-aware mini feature pyramid networks (Mini-FPN) that can directly regress 3D bounding boxes from the augmented dense feature maps, boosting the network’s ability to detect scale-varying objects, and we additionally construct a scene-adaptive single-stage 3D detector in an anchor-free manner. Extensive experiments on the KITTI and nuScenes datasets validate our method’s competitive performance.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal feature adaptive fusion for anchor-free 3D object detection\",\"authors\":\"Yanli Wu, Junyin Wang, Hui Li, Xiaoxue Ai, Xiao Li\",\"doi\":\"10.1007/s10489-025-06454-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>LiDAR and camera are two key sensors that provide mutually complementary information for 3D detection in autonomous driving. Existing multimodal detection methods often decorate the original point cloud data with camera features to complete the detection, ignoring the mutual fusion between camera features and point cloud features. In addition, ground points scanned by LiDAR in natural scenes usually interfere significantly with the detection results, and existing methods fail to address this problem effectively. We present a simple yet efficient anchor-free 3D object detection, which can better adapt to complex scenes through the adaptive fusion of multimodal features. First, we propose a fully convolutional bird’s-eye view reconstruction module to sense ground map geometry changes, for improving the interference of ground points on detection results. Second, a multimodal feature adaptive fusion module with local awareness is designed to improve the mutual fusion of camera and point cloud features. Finally, we introduce a scale-aware mini feature pyramid networks (Mini-FPN) that can directly regress 3D bounding boxes from the augmented dense feature maps, boosting the network’s ability to detect scale-varying objects, and we additionally construct a scene-adaptive single-stage 3D detector in an anchor-free manner. Extensive experiments on the KITTI and nuScenes datasets validate our method’s competitive performance.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06454-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06454-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multimodal feature adaptive fusion for anchor-free 3D object detection
LiDAR and camera are two key sensors that provide mutually complementary information for 3D detection in autonomous driving. Existing multimodal detection methods often decorate the original point cloud data with camera features to complete the detection, ignoring the mutual fusion between camera features and point cloud features. In addition, ground points scanned by LiDAR in natural scenes usually interfere significantly with the detection results, and existing methods fail to address this problem effectively. We present a simple yet efficient anchor-free 3D object detection, which can better adapt to complex scenes through the adaptive fusion of multimodal features. First, we propose a fully convolutional bird’s-eye view reconstruction module to sense ground map geometry changes, for improving the interference of ground points on detection results. Second, a multimodal feature adaptive fusion module with local awareness is designed to improve the mutual fusion of camera and point cloud features. Finally, we introduce a scale-aware mini feature pyramid networks (Mini-FPN) that can directly regress 3D bounding boxes from the augmented dense feature maps, boosting the network’s ability to detect scale-varying objects, and we additionally construct a scene-adaptive single-stage 3D detector in an anchor-free manner. Extensive experiments on the KITTI and nuScenes datasets validate our method’s competitive performance.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.