多租户太比特网络的内存高效可编程数据包解析

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xuetan Cheng , Yingwen Chen , Xiangrui Yang, Huan Zhou, Lailong Luo, Deke Guo
{"title":"多租户太比特网络的内存高效可编程数据包解析","authors":"Xuetan Cheng ,&nbsp;Yingwen Chen ,&nbsp;Xiangrui Yang,&nbsp;Huan Zhou,&nbsp;Lailong Luo,&nbsp;Deke Guo","doi":"10.1016/j.comnet.2025.111240","DOIUrl":null,"url":null,"abstract":"<div><div>Programmable data plane architectures such as RMT and dRMT obtain great attention due to their flexibility in processing packets on demand without modifying the switch chip design. Unfortunately, the packet parser, as a crucial component, suffers from low processing performance and large logic usage. Existing programmable packet parser design utilizes a Finite State Machine (FSM) to parse the packet header vector (PHV) in a loop manner, or enumerates all possible protocol paths to extract the packet header vector in parallel, which leads to low throughput or significant consumption of T-CAM resources.</div><div>This paper proposes the partition parser (PParser), a novel programmable parser design, working in multi-tenant networks, that makes the best trade-offs between the parsing performance and the resource usage as far as we are concerned. To maximize the performance, PParser initiates the protocol path analysis in compile-time and parses packets in parallel using T-CAM. To avoid the path explosion without reducing performance, PParser efficiently partitions the parsing graph into sub-graphs and leverages a multi-stage T-CAM for cascade parsing. The performance, flexibility, and resource usage of PParser are excessively evaluated using real-world protocols on the FPGA prototype. The result shows that PParser achieves 3.98<span><math><mo>×</mo></math></span> throughput compared with the FSM-based parser and 87% compression rate and a similar throughput compared with HyperParser.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"264 ","pages":"Article 111240"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory-efficient programmable packet parsing for multi-tenant terabit networks\",\"authors\":\"Xuetan Cheng ,&nbsp;Yingwen Chen ,&nbsp;Xiangrui Yang,&nbsp;Huan Zhou,&nbsp;Lailong Luo,&nbsp;Deke Guo\",\"doi\":\"10.1016/j.comnet.2025.111240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Programmable data plane architectures such as RMT and dRMT obtain great attention due to their flexibility in processing packets on demand without modifying the switch chip design. Unfortunately, the packet parser, as a crucial component, suffers from low processing performance and large logic usage. Existing programmable packet parser design utilizes a Finite State Machine (FSM) to parse the packet header vector (PHV) in a loop manner, or enumerates all possible protocol paths to extract the packet header vector in parallel, which leads to low throughput or significant consumption of T-CAM resources.</div><div>This paper proposes the partition parser (PParser), a novel programmable parser design, working in multi-tenant networks, that makes the best trade-offs between the parsing performance and the resource usage as far as we are concerned. To maximize the performance, PParser initiates the protocol path analysis in compile-time and parses packets in parallel using T-CAM. To avoid the path explosion without reducing performance, PParser efficiently partitions the parsing graph into sub-graphs and leverages a multi-stage T-CAM for cascade parsing. The performance, flexibility, and resource usage of PParser are excessively evaluated using real-world protocols on the FPGA prototype. The result shows that PParser achieves 3.98<span><math><mo>×</mo></math></span> throughput compared with the FSM-based parser and 87% compression rate and a similar throughput compared with HyperParser.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"264 \",\"pages\":\"Article 111240\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625002087\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625002087","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

可编程数据平面架构(如 RMT 和 dRMT)因其在不修改交换芯片设计的情况下按需处理数据包的灵活性而备受关注。遗憾的是,数据包解析器作为一个重要组件,存在处理性能低、逻辑用量大等问题。现有的可编程数据包解析器设计利用有限状态机(FSM)以循环方式解析数据包头向量(PHV),或枚举所有可能的协议路径来并行提取数据包头向量,从而导致吞吐量低或大量消耗 T-CAM 资源。本文提出的分区解析器(PParser)是一种新颖的可编程解析器设计,可在多租户网络中工作,在解析性能和资源使用之间做出最佳权衡。为了最大限度地提高性能,PParser 在编译时启动协议路径分析,并使用 T-CAM 并行解析数据包。为了在不降低性能的情况下避免路径爆炸,PParser 将解析图有效地分割成子图,并利用多级 T-CAM 进行级联解析。在 FPGA 原型上使用实际协议对 PParser 的性能、灵活性和资源使用情况进行了过度评估。结果表明,与基于 FSM 的解析器相比,PParser 的吞吐量提高了 3.98 倍,压缩率提高了 87%,与 HyperParser 的吞吐量相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory-efficient programmable packet parsing for multi-tenant terabit networks
Programmable data plane architectures such as RMT and dRMT obtain great attention due to their flexibility in processing packets on demand without modifying the switch chip design. Unfortunately, the packet parser, as a crucial component, suffers from low processing performance and large logic usage. Existing programmable packet parser design utilizes a Finite State Machine (FSM) to parse the packet header vector (PHV) in a loop manner, or enumerates all possible protocol paths to extract the packet header vector in parallel, which leads to low throughput or significant consumption of T-CAM resources.
This paper proposes the partition parser (PParser), a novel programmable parser design, working in multi-tenant networks, that makes the best trade-offs between the parsing performance and the resource usage as far as we are concerned. To maximize the performance, PParser initiates the protocol path analysis in compile-time and parses packets in parallel using T-CAM. To avoid the path explosion without reducing performance, PParser efficiently partitions the parsing graph into sub-graphs and leverages a multi-stage T-CAM for cascade parsing. The performance, flexibility, and resource usage of PParser are excessively evaluated using real-world protocols on the FPGA prototype. The result shows that PParser achieves 3.98× throughput compared with the FSM-based parser and 87% compression rate and a similar throughput compared with HyperParser.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信