Albert C. Yang , Wei-Ming Ma , Dung-Hung Chiang , Yi-Ze Liao , Hsien-Yung Lai , Shu-Chuan Lin , Mei-Chin Liu , Kai-Ting Wen , Tzong-Huei Lin , Wen-Xiang Tsai , Jun-Ding Zhu , Ting-Yu Chen , Hung-Fu Lee , Pei-Hung Liao , Huey-Wen Yien , Chien-Ying Wang
{"title":"基于单时间点无创生命体征的XGBoost模型早期预测脓毒症及其与c反应蛋白和降钙素原的相关性:一项多中心研究","authors":"Albert C. Yang , Wei-Ming Ma , Dung-Hung Chiang , Yi-Ze Liao , Hsien-Yung Lai , Shu-Chuan Lin , Mei-Chin Liu , Kai-Ting Wen , Tzong-Huei Lin , Wen-Xiang Tsai , Jun-Ding Zhu , Ting-Yu Chen , Hung-Fu Lee , Pei-Hung Liao , Huey-Wen Yien , Chien-Ying Wang","doi":"10.1016/j.ibmed.2025.100242","DOIUrl":null,"url":null,"abstract":"<div><div>We aimed to develop an early warning system to predict sepsis based solely on single time-point and non-invasive vital signs, and to evaluate its correlation with related biomarkers, namely C-reactive protein (CRP) and Procalcitonin (PCT). We utilized retrospective data from Physionet and four medical centers in Taiwan, encompassing a total of 46,184 Intensive Care Unit (ICU) patients, to develop and validate a machine learning algorithm based on XGBoost for predicting sepsis. The model was specifically designed to use non-invasive vital signs captured at a single time point, The correlation between sepsis AI prediction model and levels of CRP and PCT was evaluated. The developed model demonstrated balanced performance across various datasets, with an average recall of 0.908 and precision of 0.577. The model's performance was further validated by the independent dataset from Cheng-Hsin General Hospital (recall: 0.986, precision: 0.585). Temperature, systolic blood pressure, and respiration rate were the top contributing predictors in the model. A significant correlation was observed between the model's sepsis predictions and elevated CRP levels, while PCT showed a less consistent pattern. Our approach, combining AI algorithms with vital sign data and its clinical relevance to CRP level, offers a more precise and timely sepsis detection, with the potential to improve care in emergency and critical care settings.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100242"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early prediction of sepsis using an XGBoost model with single time-point non-invasive vital signs and its correlation with C-reactive protein and procalcitonin: A multi-center study\",\"authors\":\"Albert C. Yang , Wei-Ming Ma , Dung-Hung Chiang , Yi-Ze Liao , Hsien-Yung Lai , Shu-Chuan Lin , Mei-Chin Liu , Kai-Ting Wen , Tzong-Huei Lin , Wen-Xiang Tsai , Jun-Ding Zhu , Ting-Yu Chen , Hung-Fu Lee , Pei-Hung Liao , Huey-Wen Yien , Chien-Ying Wang\",\"doi\":\"10.1016/j.ibmed.2025.100242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We aimed to develop an early warning system to predict sepsis based solely on single time-point and non-invasive vital signs, and to evaluate its correlation with related biomarkers, namely C-reactive protein (CRP) and Procalcitonin (PCT). We utilized retrospective data from Physionet and four medical centers in Taiwan, encompassing a total of 46,184 Intensive Care Unit (ICU) patients, to develop and validate a machine learning algorithm based on XGBoost for predicting sepsis. The model was specifically designed to use non-invasive vital signs captured at a single time point, The correlation between sepsis AI prediction model and levels of CRP and PCT was evaluated. The developed model demonstrated balanced performance across various datasets, with an average recall of 0.908 and precision of 0.577. The model's performance was further validated by the independent dataset from Cheng-Hsin General Hospital (recall: 0.986, precision: 0.585). Temperature, systolic blood pressure, and respiration rate were the top contributing predictors in the model. A significant correlation was observed between the model's sepsis predictions and elevated CRP levels, while PCT showed a less consistent pattern. Our approach, combining AI algorithms with vital sign data and its clinical relevance to CRP level, offers a more precise and timely sepsis detection, with the potential to improve care in emergency and critical care settings.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early prediction of sepsis using an XGBoost model with single time-point non-invasive vital signs and its correlation with C-reactive protein and procalcitonin: A multi-center study
We aimed to develop an early warning system to predict sepsis based solely on single time-point and non-invasive vital signs, and to evaluate its correlation with related biomarkers, namely C-reactive protein (CRP) and Procalcitonin (PCT). We utilized retrospective data from Physionet and four medical centers in Taiwan, encompassing a total of 46,184 Intensive Care Unit (ICU) patients, to develop and validate a machine learning algorithm based on XGBoost for predicting sepsis. The model was specifically designed to use non-invasive vital signs captured at a single time point, The correlation between sepsis AI prediction model and levels of CRP and PCT was evaluated. The developed model demonstrated balanced performance across various datasets, with an average recall of 0.908 and precision of 0.577. The model's performance was further validated by the independent dataset from Cheng-Hsin General Hospital (recall: 0.986, precision: 0.585). Temperature, systolic blood pressure, and respiration rate were the top contributing predictors in the model. A significant correlation was observed between the model's sepsis predictions and elevated CRP levels, while PCT showed a less consistent pattern. Our approach, combining AI algorithms with vital sign data and its clinical relevance to CRP level, offers a more precise and timely sepsis detection, with the potential to improve care in emergency and critical care settings.