Tatiana Prokaeva , Shobini Jayaraman , Elena Klimtchuk , Natasha Burke , Brian Spencer , Dobrin Nedelkov , Hui Chen , Surendra Dasari , Ellen D. McPhail , Lucas Pereira , Michael C. Payne , Sherry Wong , Eric J. Burks , Vaishali Sanchorawala , Olga Gursky
{"title":"一种新的Asp20Tyr取代引起的遗传性AApoAI淀粉样变性的不寻常表型与载脂蛋白a - i的ph依赖性聚集有关","authors":"Tatiana Prokaeva , Shobini Jayaraman , Elena Klimtchuk , Natasha Burke , Brian Spencer , Dobrin Nedelkov , Hui Chen , Surendra Dasari , Ellen D. McPhail , Lucas Pereira , Michael C. Payne , Sherry Wong , Eric J. Burks , Vaishali Sanchorawala , Olga Gursky","doi":"10.1016/j.bbadis.2025.167820","DOIUrl":null,"url":null,"abstract":"<div><div>Apolipoprotein A-I (apoA-I) plays beneficial roles as the major structural and functional protein on plasma high-density lipoproteins (HDL). However, <em>APOA1</em> gene mutations can cause protein misfolding and pathologic amyloid deposition in various organs in human hereditary AApoAI amyloidosis, a potentially lethal systemic disease. We report esophageal and duodenal AApoAI amyloidosis in a 56-year-old patient with Barrett's esophagus, a condition involving chronic acid reflux. Amyloid deposits contained full-length apoA-I featuring a novel D20Y mutation identified by gene sequencing and protein mass spectrometry. Genetic analysis of asymptomatic family members revealed autosomal dominant inheritance. Fibril formation by the full-length variant apoA-I rather than its fragments and the location of the mutation in a conserved amyloid-prone N-terminal segment were highly unusual for hereditary AApoA-I amyloidosis. Structural and stability studies of the recombinant D20Y and wild-type apoA-I showed small but significant mutation-induced structural perturbations in the native lipid-free protein at pH 7.4. Major destabilization and aggregation of the variant protein were observed at pH 4.0. We propose that acidic conditions in Barrett's esophagus promoted protein misfolding and amyloid formation by the D20Y variant. These findings expand our understanding of the clinical features and molecular basis of AApoAI amyloidosis and suggest clinical strategies.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 5","pages":"Article 167820"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unusual phenotype of hereditary AApoAI amyloidosis caused by a novel Asp20Tyr substitution is linked to pH-dependent aggregation of apolipoprotein A-I\",\"authors\":\"Tatiana Prokaeva , Shobini Jayaraman , Elena Klimtchuk , Natasha Burke , Brian Spencer , Dobrin Nedelkov , Hui Chen , Surendra Dasari , Ellen D. McPhail , Lucas Pereira , Michael C. Payne , Sherry Wong , Eric J. Burks , Vaishali Sanchorawala , Olga Gursky\",\"doi\":\"10.1016/j.bbadis.2025.167820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Apolipoprotein A-I (apoA-I) plays beneficial roles as the major structural and functional protein on plasma high-density lipoproteins (HDL). However, <em>APOA1</em> gene mutations can cause protein misfolding and pathologic amyloid deposition in various organs in human hereditary AApoAI amyloidosis, a potentially lethal systemic disease. We report esophageal and duodenal AApoAI amyloidosis in a 56-year-old patient with Barrett's esophagus, a condition involving chronic acid reflux. Amyloid deposits contained full-length apoA-I featuring a novel D20Y mutation identified by gene sequencing and protein mass spectrometry. Genetic analysis of asymptomatic family members revealed autosomal dominant inheritance. Fibril formation by the full-length variant apoA-I rather than its fragments and the location of the mutation in a conserved amyloid-prone N-terminal segment were highly unusual for hereditary AApoA-I amyloidosis. Structural and stability studies of the recombinant D20Y and wild-type apoA-I showed small but significant mutation-induced structural perturbations in the native lipid-free protein at pH 7.4. Major destabilization and aggregation of the variant protein were observed at pH 4.0. We propose that acidic conditions in Barrett's esophagus promoted protein misfolding and amyloid formation by the D20Y variant. These findings expand our understanding of the clinical features and molecular basis of AApoAI amyloidosis and suggest clinical strategies.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 5\",\"pages\":\"Article 167820\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443925001656\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001656","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An unusual phenotype of hereditary AApoAI amyloidosis caused by a novel Asp20Tyr substitution is linked to pH-dependent aggregation of apolipoprotein A-I
Apolipoprotein A-I (apoA-I) plays beneficial roles as the major structural and functional protein on plasma high-density lipoproteins (HDL). However, APOA1 gene mutations can cause protein misfolding and pathologic amyloid deposition in various organs in human hereditary AApoAI amyloidosis, a potentially lethal systemic disease. We report esophageal and duodenal AApoAI amyloidosis in a 56-year-old patient with Barrett's esophagus, a condition involving chronic acid reflux. Amyloid deposits contained full-length apoA-I featuring a novel D20Y mutation identified by gene sequencing and protein mass spectrometry. Genetic analysis of asymptomatic family members revealed autosomal dominant inheritance. Fibril formation by the full-length variant apoA-I rather than its fragments and the location of the mutation in a conserved amyloid-prone N-terminal segment were highly unusual for hereditary AApoA-I amyloidosis. Structural and stability studies of the recombinant D20Y and wild-type apoA-I showed small but significant mutation-induced structural perturbations in the native lipid-free protein at pH 7.4. Major destabilization and aggregation of the variant protein were observed at pH 4.0. We propose that acidic conditions in Barrett's esophagus promoted protein misfolding and amyloid formation by the D20Y variant. These findings expand our understanding of the clinical features and molecular basis of AApoAI amyloidosis and suggest clinical strategies.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.